A note on maximal inequalities
We consider the stochastic equation where is a one-dimensional Brownian motion, is the initial value, and is a time-dependent diffusion coefficient. While the existence of solutions is well-studied for only measurable diffusion coefficients , beyond the homogeneous case there is no general result on the uniqueness in law of the solution. The purpose of the present note is to give conditions on ensuring the existence as well as the uniqueness in law of the solution.
The -finite measure which unifies supremum penalisations for a stable Lévy process is introduced. Silverstein’s coinvariant and coharmonic functions for Lévy processes and Chaumont’s -transform processes with respect to these functions are utilized for the construction of .
It was shown in [2] that a Langevin process can be reflected at an energy absorbing boundary. Here, we establish that the law of this reflecting process can be characterized as the unique weak solution to a certain second order stochastic differential equation with constraints, which is in sharp contrast with a deterministic analog.
Assume that , are continuous-path martingales taking values in , , such that is differentially subordinate to . The paper contains the proof of the maximal inequality The constant is shown to be the best possible, even in the one-dimensional setting of stochastic integrals with respect to a standard Brownian motion. The proof uses Burkholder’s method and rests on the construction of an appropriate special function.
Let X be a submartingale starting from 0, and Y be a semimartingale which is orthogonal and strongly differentially subordinate to X. The paper contains the proof of the sharp estimate . As an application, a related weak-type inequality for smooth functions on Euclidean domains is established.
Let α ∈ [0,1] be a fixed parameter. We show that for any nonnegative submartingale X and any semimartingale Y which is α-subordinate to X, we have the sharp estimate . Here W is the weak- space introduced by Bennett, DeVore and Sharpley. The inequality is already sharp in the context of α-subordinate Itô processes.
In this paper we solve the basic fractional analogue of the classical linear-quadratic gaussian regulator problem in continuous time. For a completely observable controlled linear system driven by a fractional brownian motion, we describe explicitely the optimal control policy which minimizes a quadratic performance criterion.
In this paper we solve the basic fractional analogue of the classical linear-quadratic Gaussian regulator problem in continuous time. For a completely observable controlled linear system driven by a fractional Brownian motion, we describe explicitely the optimal control policy which minimizes a quadratic performance criterion.