Displaying 221 – 240 of 456

Showing per page

A strong invariance principle for negatively associated random fields

Guang-hui Cai (2011)

Czechoslovak Mathematical Journal

In this paper we obtain a strong invariance principle for negatively associated random fields, under the assumptions that the field has a finite ( 2 + δ ) th moment and the covariance coefficient u ( n ) exponentially decreases to 0 . The main tools are the Berkes-Morrow multi-parameter blocking technique and the Csörgő-Révész quantile transform method.

A strong mixing condition for second-order stationary random fields

Raymond Cheng (1992)

Studia Mathematica

Let X m n be a second-order stationary random field on Z². Let ℳ(L) be the linear span of X m n : m 0 , n Z , and ℳ(RN) the linear span of X m n : m N , n Z . Spectral criteria are given for the condition l i m N c N = 0 , where c N is the cosine of the angle between ℳ(L) and ( R N ) .

A time-dependent best choice problem with costs and random lifetime in organ transplants

Anna Krasnosielska (2010)

Applicationes Mathematicae

This paper develops and analyzes a time-dependent optimal stopping problem and its application to the decision making process concerning organ transplants. Offers (organs for transplant) appear at jump times of a Poisson process. The values of the offers are i.i.d. random variables with a known distribution function. These values express the degree of histocompatibility between the donor and the recipient. The sequence of offers is independent of the jump times of the Poisson process. The decision...

Currently displaying 221 – 240 of 456