On the stability of interacting processes with applications to filtering and genetic algorithms
First, we derive a representation formula for all cumulant density functions in terms of the non-negative definite kernel function defining an -determinantal point process (DPP). Assuming absolute integrability of the function , we show that a stationary -DPP with kernel function is “strongly” Brillinger-mixing, implying, among others, that its tail--field is trivial. Second, we use this mixing property to prove rates of normal convergence for shot-noise processes and sketch some applications...
The paper is a contribution to the theory of branching processes with discrete time and a general phase space in the sense of [2]. We characterize the class of regular, i.e. in a sense sufficiently random, branching processes (Φk) k∈Z by almost sure properties of their realizations without making any assumptions about stationarity or existence of moments. This enables us to classify the clans of (Φk) into the regular part and the completely non-regular part. It turns out that the completely non-regular branching...
We study the supremum of some random Dirichlet polynomials , where (εₙ) is a sequence of independent Rademacher random variables, the weights (dₙ) are multiplicative and 0 ≤ σ < 1/2. Particular attention is given to the polynomials , , P⁺(n) being the largest prime divisor of n. We obtain sharp upper and lower bounds for the supremum expectation that extend the optimal estimate of Halász-Queffélec, . The proofs are entirely based on methods of stochastic processes, in particular the metric...
In this paper we consider an autoregressive Pareto process which can be used as an alternative to heavy tailed MARMA. We focus on the tail behavior and prove that the tail empirical quantile function can be approximated by a Gaussian process. This result allows to derive a class of consistent and asymptotically normal estimators for the shape parameter. We will see through simulation that the usual estimation procedure based on an i.i.d. setting may fall short of the desired precision.
We study the tails of the distribution of the maximum of a stationary gaussian process on a bounded interval of the real line. Under regularity conditions including the existence of the spectral moment of order 8, we give an additional term for this asymptotics. This widens the application of an expansion given originally by Piterbarg [11] for a sufficiently small interval.
We study the tails of the distribution of the maximum of a stationary Gaussian process on a bounded interval of the real line. Under regularity conditions including the existence of the spectral moment of order 8, we give an additional term for this asymptotics. This widens the application of an expansion given originally by Piterbarg [CITE] for a sufficiently small interval.
Let N ≥ 2 be a given integer. Suppose that is a martingale difference sequence with values in and let be a deterministic sequence of signs. The paper contains the proof of the estimate . It is shown that this result is asymptotically sharp in the sense that the least constant in the above estimate satisfies . The novelty in the proof is the explicit verification of the ζ-convexity of the space .
Upper estimates are presented for the universal constant in the Katz-Petrov and Osipov inequalities which do not exceed 3.1905.