Displaying 1241 – 1260 of 3391

Showing per page

Karhunen-Loève expansions of α-Wiener bridges

Mátyás Barczy, Endre Iglói (2011)

Open Mathematics

We study Karhunen-Loève expansions of the process(X t(α))t∈[0,T) given by the stochastic differential equation d X t ( α ) = - α T - t X t ( α ) d t + d B t , t [ 0 , T ) , with the initial condition X 0(α) = 0, where α > 0, T ∈ (0, ∞), and (B t)t≥0 is a standard Wiener process. This process is called an α-Wiener bridge or a scaled Brownian bridge, and in the special case of α = 1 the usual Wiener bridge. We present weighted and unweighted Karhunen-Loève expansions of X (α). As applications, we calculate the Laplace transform and the distribution function...

Kolmogorov equation and large-time behaviour for fractional Brownian motion driven linear SDE's

Michal Vyoral (2005)

Applications of Mathematics

We consider a stochastic process X t x which solves an equation d X t x = A X t x d t + Φ d B t H , X 0 x = x where A and Φ are real matrices and B H is a fractional Brownian motion with Hurst parameter H ( 1 / 2 , 1 ) . The Kolmogorov backward equation for the function u ( t , x ) = 𝔼 f ( X t x ) is derived and exponential convergence of probability distributions of solutions to the limit measure is established.

KPZ formula for log-infinitely divisible multifractal random measures

Rémi Rhodes, Vincent Vargas (2011)

ESAIM: Probability and Statistics

We consider the continuous model of log-infinitely divisible multifractal random measures (MRM) introduced in [E. Bacry et al. Comm. Math. Phys. 236 (2003) 449–475]. If M is a non degenerate multifractal measure with associated metric ρ(x,y) = M([x,y]) and structure function ζ, we show that we have the following relation between the (Euclidian) Hausdorff dimension dimH of a measurable set K and the Hausdorff dimension dimHρ with respect to ρ of the same set: ζ(dimHρ(K)) = dimH(K). Our results can...

KPZ formula for log-infinitely divisible multifractal random measures

Rémi Rhodes, Vincent Vargas (2012)

ESAIM: Probability and Statistics

We consider the continuous model of log-infinitely divisible multifractal random measures (MRM) introduced in [E. Bacry et al. Comm. Math. Phys.236 (2003) 449–475]. If M is a non degenerate multifractal measure with associated metric ρ(x,y) = M([x,y]) and structure function ζ, we show that we have the following relation between the (Euclidian) Hausdorff dimension dimH of a measurable set K and the Hausdorff dimension dimHρ with respect to ρ of the same set: ζ(dimHρ(K)) = dimH(K). Our results can...

La entropía no aditiva de orden α y tipo β de un proceso puntual.

Julio A. Pardo Llorente, M.ª Lina Vicente Hernanz, María Dolores Esteban Lefler (1989)

Trabajos de Estadística

En esta comunicación se establece una medida de la entropía contenida en un proceso puntual mediante el concepto de entropía de orden α y tipo β introducida por Sharma and Mittal (1975); quedando, de este modo, generalizada la entropía de McFadden. Una vez que se estudian las propiedades relativas a la tasa de cambio de la Entropía, se demuestra que el proceso de Poisson es el de Entropía máxima dentro de la clase de los procesos puntuales estacionarios.

Currently displaying 1241 – 1260 of 3391