Displaying 1281 – 1300 of 3391

Showing per page

Large deviations for generic stationary processes

Emmanuel Lesigne, Dalibor Volný (2000)

Colloquium Mathematicae

Let (Ω,A,μ,T) be a measure preserving dynamical system. The speed of convergence in probability in the ergodic theorem for a generic function on Ω is arbitrarily slow.

Large deviations for independent random variables – Application to Erdös-Renyi’s functional law of large numbers

Jamal Najim (2005)

ESAIM: Probability and Statistics

A Large Deviation Principle (LDP) is proved for the family 1 n 1 n 𝐟 ( x i n ) · Z i n where the deterministic probability measure 1 n 1 n δ x i n converges weakly to a probability measure R and ( Z i n ) i are d -valued independent random variables whose distribution depends on x i n and satisfies the following exponential moments condition: sup i , n 𝔼 e α * | Z i n | < + forsome 0 < α * < + . In this context, the identification of the rate function is non-trivial due to the absence of equidistribution. We rely on fine convex analysis to address this issue. Among the applications of this result, we extend...

Large deviations for independent random variables – Application to Erdös-Renyi's functional law of large numbers

Jamal Najim (2010)

ESAIM: Probability and Statistics

A Large Deviation Principle (LDP) is proved for the family 1 n 1 n 𝐟 ( x i n ) · Z i n where the deterministic probability measure 1 n 1 n δ x i n converges weakly to a probability measure R and ( Z i n ) i are d -valued independent random variables whose distribution depends on x i n and satisfies the following exponential moments condition: sup i , n 𝔼 e α * | Z i n | < + forsome 0 < α * < + . In this context, the identification of the rate function is non-trivial due to the absence of equidistribution. We rely on fine convex analysis to address this issue. Among the applications of this result,...

Large deviations for Riesz potentials of additive processes

Richard Bass, Xia Chen, Jay Rosen (2009)

Annales de l'I.H.P. Probabilités et statistiques

We study functionals of the form ζt=∫0t⋯∫0t|X1(s1)+⋯+Xp(sp)|−σ ds1 ⋯ dsp, where X1(t), …, Xp(t) are i.i.d. d-dimensional symmetric stable processes of index 0&lt;β≤2. We obtain results about the large deviations and laws of the iterated logarithm for ζt.

Large deviations principle by viscosity solutions: the case of diffusions with oblique Lipschitz reflections

Magdalena Kobylanski (2013)

Annales de l'I.H.P. Probabilités et statistiques

We establish a Large Deviations Principle for diffusions with Lipschitz continuous oblique reflections on regular domains. The rate functional is given as the value function of a control problem and is proved to be good. The proof is based on a viscosity solution approach. The idea consists in interpreting the probabilities as the solutions to some PDEs, make the logarithmic transform, pass to the limit, and then identify the action functional as the solution of the limiting equation.

Large scale behaviour of the spatial 𝛬 -Fleming–Viot process

N. Berestycki, A. M. Etheridge, A. Véber (2013)

Annales de l'I.H.P. Probabilités et statistiques

We consider the spatial 𝛬 -Fleming–Viot process model (Electron. J. Probab.15(2010) 162–216) for frequencies of genetic types in a population living in d , in the special case in which there are just two types of individuals, labelled 0 and 1 . At time zero, everyone in a given half-space has type 1, whereas everyone in the complementary half-space has type 0 . We are concerned with patterns of frequencies of the two types at large space and time scales. We consider two cases, one in which the dynamics...

Laslett’s transform for the Boolean model in d

Rostislav Černý (2006)

Kybernetika

Consider a stationary Boolean model X with convex grains in d and let any exposed lower tangent point of X be shifted towards the hyperplane N 0 = { x d : x 1 = 0 } by the length of the part of the segment between the point and its projection onto the N 0 covered by X . The resulting point process in the halfspace (the Laslett’s transform of X ) is known to be stationary Poisson and of the same intensity as the original Boolean model. This result was first formulated for the planar Boolean model (see N. Cressie [Cressie])...

Currently displaying 1281 – 1300 of 3391