Displaying 1581 – 1600 of 3391

Showing per page

Multidimensional Models for Methodological Validation in Multifractal Analysis

R. Lopes, I. Bhouri, S. Maouche, P. Dubois, M. H. Bedoui, N. Betrouni (2008)

Mathematical Modelling of Natural Phenomena

Multifractal analysis is known as a useful tool in signal analysis. However, the methods are often used without methodological validation. In this study, we present multidimensional models in order to validate multifractal analysis methods.

Multifractal properties of the sets of zeroes of Brownian paths

Dmitry Dolgopyat, Vadim Sidorov (1995)

Fundamenta Mathematicae

We study Brownian zeroes in the neighborhood of which one can observe a non-typical growth rate of Brownian excursions. We interpret the multifractal curve for the Brownian zeroes calculated in [6] as the Hausdorff dimension of certain sets. This provides an example of the multifractal analysis of a statistically self-similar random fractal when both the spacing and the size of the corresponding nested sets are random.

Multifractional processes with random exponent.

Antoine Ayache, Murad S. Taqqu (2005)

Publicacions Matemàtiques

Multifractional Processes with Random Exponent (MPRE) are obtained by replacing the Hurst parameter of Fractional Brownian Motion (FBM) with a stochastic process. This process need not be independent of the white noise generating the FBM. MPREs can be conveniently represented as random wavelet series. We will use this type of representation to study their Hölder regularity and their self-similarity.

Multiparameter multifractional brownian motion : local nondeterminism and joint continuity of the local times

Antoine Ayache, Narn-Rueih Shieh, Yimin Xiao (2011)

Annales de l'I.H.P. Probabilités et statistiques

By using a wavelet method we prove that the harmonisable-type N-parameter multifractional brownian motion (mfBm) is a locally nondeterministic gaussian random field. This nice property then allows us to establish joint continuity of the local times of an (N, d)-mfBm and to obtain some new results concerning its sample path behavior.

Multiparameter pointwise ergodic theorems for Markov operators on L∞.

Ryotaro Sato (1994)

Publicacions Matemàtiques

Let P1, ..., Pd be commuting Markov operators on L∞(X,F,μ), where (X,F,μ) is a probability measure space. Assuming that each Pi is either conservative or invertible, we prove that for every f in Lp(X,F,μ) with 1 ≤ p < ∞ the averagesAnf = (n + 1)-d Σ0≤ni≤n P1n1 P2n2 ... Pdnd f (n ≥ 0)converge almost everywhere if and only if there exists an invariant and equivalent finite measure λ for which the Radon-Nikodym derivative v = dλ/dμ is in the dual space Lp'(X,F,μ). Next we study the case in...

Multi-variate correlation and mixtures of product measures

Tim Austin (2020)

Kybernetika

Total correlation (‘TC’) and dual total correlation (‘DTC’) are two classical ways to quantify the correlation among an n -tuple of random variables. They both reduce to mutual information when n = 2 . The first part of this paper sets up the theory of TC and DTC for general random variables, not necessarily finite-valued. This generality has not been exposed in the literature before. The second part considers the structural implications when a joint distribution μ has small TC or DTC. If TC ( μ ) = o ( n ) , then μ is...

Multivariate Markov Families of Copulas

Ludger Overbeck, Wolfgang M. Schmidt (2015)

Dependence Modeling

For the Markov property of a multivariate process, a necessary and suficient condition on the multidimensional copula of the finite-dimensional distributions is given. This establishes that the Markov property is solely a property of the copula, i.e., of the dependence structure. This extends results by Darsow et al. [11] from dimension one to the multivariate case. In addition to the one-dimensional case also the spatial copula between the different dimensions has to be taken into account. Examples...

Multivariate normal approximation using Stein’s method and Malliavin calculus

Ivan Nourdin, Giovanni Peccati, Anthony Réveillac (2010)

Annales de l'I.H.P. Probabilités et statistiques

We combine Stein’s method with Malliavin calculus in order to obtain explicit bounds in the multidimensional normal approximation (in the Wasserstein distance) of functionals of gaussian fields. Among several examples, we provide an application to a functional version of the Breuer–Major CLT for fields subordinated to a fractional brownian motion.

Currently displaying 1581 – 1600 of 3391