On the exponentials of fractional Ornstein-Uhlenbeck processes.
In what concerns extreme values modeling, heavy tailed autoregressive processes defined with the minimum or maximum operator have proved to be good alternatives to classical linear ARMA with heavy tailed marginals (Davis and Resnick [8], Ferreira and Canto e Castro [13]). In this paper we present a complete characterization of the tail behavior of the autoregressive Pareto process known as Yeh-Arnold-Robertson Pareto(III) (Yeh et al. [32]). We shall see that it is quite similar to the first order...
Let be a group endowed with a length function , and let be a linear subspace of . We say that satisfies the Haagerup inequality if there exists constants such that, for any , the convolutor norm of on is dominated by times the norm of . We show that, for , the Haagerup inequality can be expressed in terms of decay of random walks associated with finitely supported symmetric probability measures on . If is a word length function on a finitely generated group , we show that,...
In this paper we solve the basic fractional analogue of the classical infinite time horizon linear-quadratic gaussian regulator problem. For a completely observable controlled linear system driven by a fractional brownian motion, we describe explicitely the optimal control policy which minimizes an asymptotic quadratic performance criterion.
In this paper we solve the basic fractional analogue of the classical infinite time horizon linear-quadratic Gaussian regulator problem. For a completely observable controlled linear system driven by a fractional Brownian motion, we describe explicitely the optimal control policy which minimizes an asymptotic quadratic performance criterion.
We consider the autoregressive model on ℝd defined by the stochastic recursion Xn = AnXn−1 + Bn, where {(Bn, An)} are i.i.d. random variables valued in ℝd× ℝ+. The critical case, when , was studied by Babillot, Bougerol and Elie, who proved that there exists a unique invariant Radon measureν for the Markov chain {Xn}. In the present paper we prove that the weak limit of properly dilated measure ν exists and defines a homogeneous measure on ℝd ∖ {0}.
The Kaczmarz algorithm of successive projections suggests the following concept. A sequence of unit vectors in a Hilbert space is said to be effective if for each vector x in the space the sequence (xₙ) converges to x where (xₙ) is defined inductively: x₀ = 0 and , where . We prove the effectivity of some sequences in Hilbert spaces. We generalize the concept of effectivity to sequences of vectors in Banach spaces and we prove some results for this more general concept.
We discuss the influence of the transformation {X(t)} → {f(t) X(τ(t))} on the Karhunen-Loève expansion of {X(t)}. Our main result is that, in general, the Karhunen-Loève expansion of {X(t)} with respect to Lebesgue's measure is transformed in the Karhunen-Loève expansion of {f(t) X(τ(t))} with respect to the measure f-2(t)dτ(t). Applications of this result are given in the case of Wiener process, Brownian bridge, and Ornstein-Uhlenbeck process.
In order to develop a general criterion for proving strong consistency of estimators in Statistics of stochastic processes, we study an extension, to the continuous-time case, of the strong law of large numbers for discrete time square integrable martingales (e.g. Neveu, 1965, 1972). Applications to estimation in diffusion models are given.