Page 1 Next

Displaying 1 – 20 of 27

Showing per page

Parabolic variational inequalities with generalized reflecting directions

Eduard Rotenstein (2015)

Open Mathematics

We study, in a Hilbert framework, some abstract parabolic variational inequalities, governed by reflecting subgradients with multiplicative perturbation, of the following type: y´(t)+ Ay(t)+0.t Θ(t,y(t)) ∂φ(y(t))∋f(t,y(t)),y(0) = y0,t ∈[0,T] where A is a linear self-adjoint operator, ∂φ is the subdifferential operator of a proper lower semicontinuous convex function φ defined on a suitable Hilbert space, and Θ is the perturbing term which acts on the set of reflecting directions, destroying the...

Parametric inference for mixed models defined by stochastic differential equations

Sophie Donnet, Adeline Samson (2008)

ESAIM: Probability and Statistics

Non-linear mixed models defined by stochastic differential equations (SDEs) are considered: the parameters of the diffusion process are random variables and vary among the individuals. A maximum likelihood estimation method based on the Stochastic Approximation EM algorithm, is proposed. This estimation method uses the Euler-Maruyama approximation of the diffusion, achieved using latent auxiliary data introduced to complete the diffusion process between each pair of measurement instants. A tuned...

Partially observed optimal controls of forward-backward doubly stochastic systems

Yufeng Shi, Qingfeng Zhu (2013)

ESAIM: Control, Optimisation and Calculus of Variations

The partially observed optimal control problem is considered for forward-backward doubly stochastic systems with controls entering into the diffusion and the observation. The maximum principle is proven for the partially observable optimal control problems. A probabilistic approach is used, and the adjoint processes are characterized as solutions of related forward-backward doubly stochastic differential equations in finite-dimensional spaces. Then, our theoretical result is applied to study a partially-observed...

Pathwise differentiability for SDEs in a convex polyhedron with oblique reflection

Sebastian Andres (2009)

Annales de l'I.H.P. Probabilités et statistiques

In this paper, the object of study is a Skorohod SDE in a convex polyhedron with oblique reflection at the boundary. We prove that the solution is pathwise differentiable with respect to its deterministic starting point up to the time when two of the faces are hit simultaneously. The resulting derivatives evolve according to an ordinary differential equation, when the process is in the interior of the polyhedron, and they are projected to the tangent space, when the process hits the boundary, while...

Peano type theorem for random fuzzy initial value problem

Marek T. Malinowski (2011)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we consider the random fuzzy differential equations and show their application by an example. Under suitable conditions the Peano type theorem on existence of solutions is proved. For our purposes, a notion of ε-solution is exploited.

Periodic and almost periodic flows of periodic Ito equations

C. Tudor (1992)

Mathematica Bohemica

Under the uniform asymptotic stability of a finite dimensional Ito equation with periodic coefficients, the asymptotically almost periodicity of the l p -bounded solution and the existence of a trajectory of an almost periodic flow defined on the space of all probability measures are established.

Persistence and extinction of a stochastic delay predator-prey model under regime switching

Zhen Hai Liu, Qun Liu (2014)

Applications of Mathematics

The paper is concerned with a stochastic delay predator-prey model under regime switching. Sufficient conditions for extinction and non-persistence in the mean of the system are established. The threshold between persistence and extinction is also obtained for each population. Some numerical simulations are introduced to support our main results.

Perturbation stochastique de processus de rafle

Frédéric Bernicot (2008/2009)

Séminaire Équations aux dérivées partielles

Lors de cet exposé, nous nous intéressons à l’étude de perturbations stochastiques de certaines inclusions différentielles du premier ordre  : les processus de rafle par des ensembles uniformément prox-réguliers. Ce travail nous amène à combiner la théorie des processus de rafle et celle traitant de la reflexion d’un mouvement brownien sur la frontière d’un ensemble. Nous donnerons des résultats traitant du caractère bien-posé de ces inclusions différentielles stochastiques et de leur stabilité.

Perturbed linear rough differential equations

Laure Coutin, Antoine Lejay (2014)

Annales mathématiques Blaise Pascal

We study linear rough differential equations and we solve perturbed linear rough differential equations using the Duhamel principle. These results provide us with a key technical point to study the regularity of the differential of the Itô map in a subsequent article. Also, the notion of linear rough differential equations leads to consider multiplicative functionals with values in Banach algebras more general than tensor algebras and to consider extensions of classical results such as the Magnus...

Pointwise convergence of Boltzmann solutions for grazing collisions in a Maxwell gas via a probabilitistic interpretation

Hélène Guérin (2004)

ESAIM: Probability and Statistics

Using probabilistic tools, this work states a pointwise convergence of function solutions of the 2-dimensional Boltzmann equation to the function solution of the Landau equation for Maxwellian molecules when the collisions become grazing. To this aim, we use the results of Fournier (2000) on the Malliavin calculus for the Boltzmann equation. Moreover, using the particle system introduced by Guérin and Méléard (2003), some simulations of the solution of the Landau equation will be given. This result...

Pointwise convergence of Boltzmann solutions for grazing collisions in a Maxwell gas via a probabilitistic interpretation

Hélène Guérin (2010)

ESAIM: Probability and Statistics


Using probabilistic tools, this work states a pointwise convergence of function solutions of the 2-dimensional Boltzmann equation to the function solution of the Landau equation for Maxwellian molecules when the collisions become grazing. To this aim, we use the results of Fournier (2000) on the Malliavin calculus for the Boltzmann equation. Moreover, using the particle system introduced by Guérin and Méléard (2003), some simulations of the solution of the Landau equation will be given. This result...

Pricing rules under asymmetric information

Shigeyoshi Ogawa, Monique Pontier (2007)

ESAIM: Probability and Statistics

We consider an extension of the Kyle and Back's model [Back, Rev. Finance Stud.5 (1992) 387–409; Kyle, Econometrica35 (1985) 1315–1335], meaning a model for the market with a continuous time risky asset and asymmetrical information. There are three financial agents: the market maker, an insider trader (who knows a random variable V which will be revealed at final time) and a non informed agent. Here we assume that the non informed agent is strategic, namely he/she uses a utility function to...

Currently displaying 1 – 20 of 27

Page 1 Next