Displaying 481 – 500 of 612

Showing per page

Stationary distributions for jump processes with memory

K. Burdzy, T. Kulczycki, R. L. Schilling (2012)

Annales de l'I.H.P. Probabilités et statistiques

We analyze a jump processes Z with a jump measure determined by a “memory” process S . The state space of ( Z , S ) is the Cartesian product of the unit circle and the real line. We prove that the stationary distribution of ( Z , S ) is the product of the uniform probability measure and a Gaussian distribution.

Statistical causality and adapted distribution

Ljiljana Petrović, Sladjana Dimitrijević (2011)

Czechoslovak Mathematical Journal

In the paper D. Hoover, J. Keisler: Adapted probability distributions, Trans. Amer. Math. Soc. 286 (1984), 159–201 the notion of adapted distribution of two stochastic processes was introduced, which in a way represents the notion of equivalence of those processes. This very important property is hard to prove directly, so we continue the work of Keisler and Hoover in finding sufficient conditions for two stochastic processes to have the same adapted distribution. For this purpose we use the concept...

Stochastic differential equations driven by processes generated by divergence form operators I: a Wong-Zakai theorem

Antoine Lejay (2006)

ESAIM: Probability and Statistics

We show in this article how the theory of “rough paths” allows us to construct solutions of differential equations (SDEs) driven by processes generated by divergence-form operators. For that, we use approximations of the trajectories of the stochastic process by piecewise smooth paths. A result of type Wong-Zakai follows immediately.

Stochastic differential equations driven by processes generated by divergence form operators II: convergence results

Antoine Lejay (2008)

ESAIM: Probability and Statistics

We have seen in a previous article how the theory of “rough paths” allows us to construct solutions of differential equations driven by processes generated by divergence form operators. In this article, we study a convergence criterion which implies that one can interchange the integral with the limit of a family of stochastic processes generated by divergence form operators. As a corollary, we identify stochastic integrals constructed with the theory of rough paths with Stratonovich or Itô integrals...

Stochastic differential equations with Sobolev drifts and driven by α -stable processes

Xicheng Zhang (2013)

Annales de l'I.H.P. Probabilités et statistiques

In this article we prove the pathwise uniqueness for stochastic differential equations in d with time-dependent Sobolev drifts, and driven by symmetric α -stable processes provided that α ( 1 , 2 ) and its spectral measure is non-degenerate. In particular, the drift is allowed to have jump discontinuity when α ( 2 d d + 1 , 2 ) . Our proof is based on some estimates of Krylov’s type for purely discontinuous semimartingales.

Stochastic flow for SDEs with jumps and irregular drift term

Enrico Priola (2015)

Banach Center Publications

We consider non-degenerate SDEs with a β-Hölder continuous and bounded drift term and driven by a Lévy noise L which is of α-stable type. If β > 1 - α/2 and α ∈ [1,2), we show pathwise uniqueness and existence of a stochastic flow. We follow the approach of [Priola, Osaka J. Math. 2012] improving the assumptions on the noise L. In our previous paper L was assumed to be non-degenerate, α-stable and symmetric. Here we can also recover relativistic and truncated stable processes and some classes...

Stochastic fuzzy differential equations with an application

Marek T. Malinowski, Mariusz Michta (2011)

Kybernetika

In this paper we present the existence and uniqueness of solutions to the stochastic fuzzy differential equations driven by Brownian motion. The continuous dependence on initial condition and stability properties are also established. As an example of application we use some stochastic fuzzy differential equation in a model of population dynamics.

Stochastic Modulation Equations on Unbounded Domains

Bianchi, Luigi A., Blömker, Dirk (2017)

Proceedings of Equadiff 14

We study the impact of small additive space-time white noise on nonlinear stochastic partial differential equations (SPDEs) on unbounded domains close to a bifurcation, where an infinite band of eigenvalues changes stability due to the unboundedness of the underlying domain. Thus we expect not only a slow motion in time, but also a slow spatial modulation of the dominant modes, and we rely on the approximation via modulation or amplitude equations, which acts as a replacement for the lack of random...

Stochastic representations of derivatives of solutions of one-dimensional parabolic variational inequalities with Neumann boundary conditions

Mireille Bossy, Mamadou Cissé, Denis Talay (2011)

Annales de l'I.H.P. Probabilités et statistiques

In this paper we explicit the derivative of the flows of one-dimensional reflected diffusion processes. We then get stochastic representations for derivatives of viscosity solutions of one-dimensional semilinear parabolic partial differential equations and parabolic variational inequalities with Neumann boundary conditions.

Currently displaying 481 – 500 of 612