Problèmes de Dirichlet-Neumann étalés et fonctionnelles multiplicatives associées
We consider a stochastic system of particles, usually called vortices in that setting, approximating the 2D Navier-Stokes equation written in vorticity. Assuming that the initial distribution of the position and circulation of the vortices has finite (partial) entropy and a finite moment of positive order, we show that the empirical measure of the particle system converges in law to the unique (under suitable a priori estimates) solution of the 2D Navier-Stokes equation. We actually prove a slightly...
In this review paper we consider physiologically structured population models that have been widely studied and employed in the literature to model the dynamics of a wide variety of populations. However in a number of cases these have been found inadequate to describe some phenomena arising in certain real-world applications such as dispersion in the structure variables due to growth uncertainty/variability. Prompted by this, we described two recent...
The paper is devoted to properties of generalized set-valued stochastic integrals defined in [10]. These integrals generalize set-valued stochastic integrals defined by E.J. Jung and J.H. Kim in the paper [4]. Up to now we were not able to construct any example of set-valued stochastic processes, different on a singleton, having integrably bounded set-valued integrals defined in [4]. It was shown by M. Michta (see [11]) that in the general case set-valued stochastic integrals defined by E.J. Jung...
We introduce set-valued stochastic integrals driven by a square-integrable martingale and by a semimartingale. We investigate properties of both integrals.
En este trabajo consideramos ecuaciones integrales estocásticas tipo Ito, que son construidas con integral estocástica de Cabaña, sobre espacios de Hilbert separables y respecto de operadores de Wiener. Se estudian las propiedades de regularidad del proceso solución, analizando su comportamiento respecto de la variación de los coeficientes de la ecuación y de las condiciones iniciales.