Displaying 821 – 840 of 1721

Showing per page

Moments of some random functionals

K. Urbanik (1997)

Colloquium Mathematicum

The paper deals with nonnegative stochastic processes X(t,ω)(t ≤ 0) not identically zero with stationary and independent increments right-continuous sample functions and fulfilling the initial condition X(0,ω)=0. The main aim is to study the moments of the random functionals 0 f ( X ( τ , ω ) ) d τ for a wide class of functions f. In particular a characterization of deterministic processes in terms of the exponential moments of these functionals is established.

Multiscale Finite Element approach for “weakly” random problems and related issues

Claude Le Bris, Frédéric Legoll, Florian Thomines (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We address multiscale elliptic problems with random coefficients that are a perturbation of multiscale deterministic problems. Our approach consists in taking benefit of the perturbative context to suitably modify the classical Finite Element basis into a deterministic multiscale Finite Element basis. The latter essentially shares the same approximation properties as a multiscale Finite Element basis directly generated on the random problem. The specific reference method that we use is the Multiscale...

Multiscale stochastic homogenization of convection-diffusion equations

Nils Svanstedt (2008)

Applications of Mathematics

Multiscale stochastic homogenization is studied for convection-diffusion problems. More specifically, we consider the asymptotic behaviour of a sequence of realizations of the form u ε ω / t + 1 / ϵ 3 𝒞 T 3 ( x / ε 3 ) ω 3 · u ε ω - div α T 1 ( x / ε 1 ) ω 1 , T 2 ( x / ε 2 ) ω 2 , t u ε ω = f . It is shown, under certain structure assumptions on the random vector field 𝒞 ( ω 3 ) and the random map α ( ω 1 , ω 2 , t ) , that the sequence { u ϵ ω } of solutions converges in the sense of G-convergence of parabolic operators to the solution u of the homogenized problem u / t - div ( ( t ) u ) = f .

Multivalued backward stochastic differential equations with time delayed generators

Bakarime Diomande, Lucian Maticiuc (2014)

Open Mathematics

Our aim is to study the following new type of multivalued backward stochastic differential equation: - d Y t + φ Y t d t F t , Y t , Z t , Y t , Z t d t + Z t d W t , 0 t T , Y T = ξ , where ∂φ is the subdifferential of a convex function and (Y t, Z t):= (Y(t + θ), Z(t + θ))θ∈[−T,0] represent the past values of the solution over the interval [0, t]. Our results are based on the existence theorem from Delong Imkeller, Ann. Appl. Probab., 2010, concerning backward stochastic differential equations with time delayed generators.

Multivariate normal approximation using Stein’s method and Malliavin calculus

Ivan Nourdin, Giovanni Peccati, Anthony Réveillac (2010)

Annales de l'I.H.P. Probabilités et statistiques

We combine Stein’s method with Malliavin calculus in order to obtain explicit bounds in the multidimensional normal approximation (in the Wasserstein distance) of functionals of gaussian fields. Among several examples, we provide an application to a functional version of the Breuer–Major CLT for fields subordinated to a fractional brownian motion.

Nash equilibrium payoffs for stochastic differential games with reflection

Qian Lin (2013)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we investigate Nash equilibrium payoffs for nonzero-sum stochastic differential games with reflection. We obtain an existence theorem and a characterization theorem of Nash equilibrium payoffs for nonzero-sum stochastic differential games with nonlinear cost functionals defined by doubly controlled reflected backward stochastic differential equations.

Non-autonomous stochastic Cauchy problems in Banach spaces

Mark Veraar, Jan Zimmerschied (2008)

Studia Mathematica

We study the non-autonomous stochastic Cauchy problem on a real Banach space E, d U ( t ) = A ( t ) U ( t ) d t + B ( t ) d W H ( t ) , t ∈ [0,T], U(0) = u₀. Here, W H is a cylindrical Brownian motion on a real separable Hilbert space H, ( B ( t ) ) t [ 0 , T ] are closed and densely defined operators from a constant domain (B) ⊂ H into E, ( A ( t ) ) t [ 0 , T ] denotes the generator of an evolution family on E, and u₀ ∈ E. In the first part, we study existence of weak and mild solutions by methods of van Neerven and Weis. Then we use a well-known factorisation method in the setting of evolution...

Currently displaying 821 – 840 of 1721