Displaying 1001 – 1020 of 1721

Showing per page

On the long-time behaviour of a class of parabolic SPDE’s : monotonicity methods and exchange of stability

Benjamin Bergé, Bruno Saussereau (2005)

ESAIM: Probability and Statistics

In this article we prove new results concerning the structure and the stability properties of the global attractor associated with a class of nonlinear parabolic stochastic partial differential equations driven by a standard multidimensional brownian motion. We first use monotonicity methods to prove that the random fields either stabilize exponentially rapidly with probability one around one of the two equilibrium states, or that they set out to oscillate between them. In the first case we can...

On the long-time behaviour of a class of parabolic SPDE's: monotonicity methods and exchange of stability

Benjamin Bergé, Bruno Saussereau (2010)

ESAIM: Probability and Statistics

In this article we prove new results concerning the structure and the stability properties of the global attractor associated with a class of nonlinear parabolic stochastic partial differential equations driven by a standard multidimensional Brownian motion. We first use monotonicity methods to prove that the random fields either stabilize exponentially rapidly with probability one around one of the two equilibrium states, or that they set out to oscillate between them. In the first case we can...

On the regularity of stochastic currents, fractional brownian motion and applications to a turbulence model

Franco Flandoli, Massimiliano Gubinelli, Francesco Russo (2009)

Annales de l'I.H.P. Probabilités et statistiques

We study the pathwise regularity of the map φ↦I(φ)=∫0T〈φ(Xt), dXt〉, where φ is a vector function on ℝd belonging to some Banach space V, X is a stochastic process and the integral is some version of a stochastic integral defined via regularization. A continuous version of this map, seen as a random element of the topological dual of V will be called stochastic current. We give sufficient conditions for the current to live in some Sobolev space of distributions and we provide elements to conjecture...

On the short time asymptotic of the stochastic Allen–Cahn equation

Hendrik Weber (2010)

Annales de l'I.H.P. Probabilités et statistiques

A description of the short time behavior of solutions of the Allen–Cahn equation with a smoothened additive noise is presented. The key result is that in the sharp interface limit solutions move according to motion by mean curvature with an additional stochastic forcing. This extends a similar result of Funaki [Acta Math. Sin (Engl. Ser.)15 (1999) 407–438] in spatial dimension n=2 to arbitrary dimensions.

On the singular limit of solutions to the Cox-Ingersoll-Ross interest rate model with stochastic volatility

Beáta Stehlíková, Daniel Ševčovič (2009)

Kybernetika

In this paper we are interested in term structure models for pricing zero coupon bonds under rapidly oscillating stochastic volatility. We analyze solutions to the generalized Cox–Ingersoll–Ross two factors model describing clustering of interest rate volatilities. The main goal is to derive an asymptotic expansion of the bond price with respect to a singular parameter representing the fast scale for the stochastic volatility process. We derive the second order asymptotic expansion of a solution...

On the small time asymptotics of the two-dimensional stochastic Navier–Stokes equations

Tiange Xu, Tusheng Zhang (2009)

Annales de l'I.H.P. Probabilités et statistiques

In this paper, we establish a small time large deviation principle (small time asymptotics) for the two-dimensional stochastic Navier–Stokes equations driven by multiplicative noise, which not only involves the study of the small noise, but also the investigation of the effect of the small, but highly nonlinear, unbounded drifts.

Currently displaying 1001 – 1020 of 1721