Displaying 61 – 80 of 187

Showing per page

Heat kernel of fractional Laplacian in cones

Krzysztof Bogdan, Tomasz Grzywny (2010)

Colloquium Mathematicae

We give sharp estimates for the transition density of the isotropic stable Lévy process killed when leaving a right circular cone.

Homogenization of a semilinear parabolic PDE with locally periodic coefficients: a probabilistic approach

Abdellatif Benchérif-Madani, Étienne Pardoux (2007)

ESAIM: Probability and Statistics

In this paper, a singular semi-linear parabolic PDE with locally periodic coefficients is homogenized. We substantially weaken previous assumptions on the coefficients. In particular, we prove new ergodic theorems. We show that in such a weak setting on the coefficients, the proper statement of the homogenization property concerns viscosity solutions, though we need a bounded Lipschitz terminal condition.

Infinitesimal generators for a class of polynomial processes

Włodzimierz Bryc, Jacek Wesołowski (2015)

Studia Mathematica

We study the infinitesimal generators of evolutions of linear mappings on the space of polynomials, which correspond to a special class of Markov processes with polynomial regressions called quadratic harnesses. We relate the infinitesimal generator to the unique solution of a certain commutation equation, and we use the commutation equation to find an explicit formula for the infinitesimal generator of free quadratic harnesses.

Insensitivity analysis of Markov chains

Kocurek, Martin (2010)

Programs and Algorithms of Numerical Mathematics

Sensitivity analysis of irreducible Markov chains considers an original Markov chain with transition probability matrix P and modified Markov chain with transition probability matrix P . For their respective stationary probability vectors π , π ˜ , some of the following charactristics are usually studied: π - π ˜ p for asymptotical stability [3], | π i - π ˜ i | , | π i - π ˜ i | π i for componentwise stability or sensitivity [1]. For functional transition probabilities, P = P ( t ) and stationary probability vector π ( t ) , derivatives are also used for studying...

Intertwining of birth-and-death processes

Jan M. Swart (2011)

Kybernetika

It has been known for a long time that for birth-and-death processes started in zero the first passage time of a given level is distributed as a sum of independent exponentially distributed random variables, the parameters of which are the negatives of the eigenvalues of the stopped process. Recently, Diaconis and Miclo have given a probabilistic proof of this fact by constructing a coupling between a general birth-and-death process and a process whose birth rates are the negatives of the eigenvalues,...

Intertwining of the Wright-Fisher diffusion

Tobiáš Hudec (2017)

Kybernetika

It is known that the time until a birth and death process reaches a certain level is distributed as a sum of independent exponential random variables. Diaconis, Miclo and Swart gave a probabilistic proof of this fact by coupling the birth and death process with a pure birth process such that the two processes reach the given level at the same time. Their coupling is of a special type called intertwining of Markov processes. We apply this technique to couple the Wright-Fisher diffusion with reflection...

Limiting Behaviour of Dirichlet Forms for Stable Processes on Metric Spaces

Katarzyna Pietruska-Pałuba (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Supposing that the metric space in question supports a fractional diffusion, we prove that after introducing an appropriate multiplicative factor, the Gagliardo seminorms | | f | | W σ , 2 of a function f ∈ L²(E,μ) have the property 1 / C ( f , f ) l i m i n f σ 1 ( 1 σ ) | | f | | W σ , 2 l i m s u p σ 1 ( 1 σ ) | | f | | W σ , 2 C ( f , f ) , where ℰ is the Dirichlet form relative to the fractional diffusion.

Local limit theorems for Brownian additive functionals and penalisation of Brownian paths, IX

Bernard Roynette, Marc Yor (2010)

ESAIM: Probability and Statistics

We obtain a local limit theorem for the laws of a class of Brownian additive functionals and we apply this result to a penalisation problem. We study precisely the case of the additive functional: ( A t - : = 0 t 1 X s < 0 d s , t 0 ) . On the other hand, we describe Feynman-Kac type penalisation results for long Brownian bridges thus completing some similar previous study for standard Brownian motion (see [B. Roynette, P. Vallois and M. Yor, Studia Sci. Math. Hung.43 (2006) 171–246]).

Logarithmic Sobolev inequalities for inhomogeneous Markov Semigroups

Jean-François Collet, Florent Malrieu (2008)

ESAIM: Probability and Statistics

We investigate the dissipativity properties of a class of scalar second order parabolic partial differential equations with time-dependent coefficients. We provide explicit condition on the drift term which ensure that the relative entropy of one particular orbit with respect to some other one decreases to zero. The decay rate is obtained explicitly by the use of a Sobolev logarithmic inequality for the associated semigroup, which is derived by an adaptation of Bakry's Γ-calculus. As a byproduct,...

Currently displaying 61 – 80 of 187