On the ergodic distribution of oscillating queueing systems.
This paper introduces necessary and/or sufficient conditions for the existence of solutions (g,h) to the probabilistic multichain Poisson equation (a) g = Pg and (b) g+h-Ph = f, with a given charge f, where P is a Markov kernel (or transition probability function) on a general measurable space. The existence conditions are derived via three different approaches, using (1) canonical pairs, (2) Cesàro averages, and (3) resolvents.
Let K be a compact, non-polar set in ℝm, m≥3 and let SKi(t)={Bi(s)+y: 0≤s≤t, y∈K} be Wiener sausages associated to independent brownian motions Bi, i=1, 2, 3 starting at 0. The expectation of volume of ⋂i=13SKi(t) with respect to product measure is obtained in terms of the equilibrium measure of K in the limit of large t.
On a graph, we give a characterization of a parabolic Harnack inequality and Gaussian estimates for reversible Markov chains by geometric properties (volume regularity and Poincaré inequality).
The aim of this paper is to give a description of the Poisson kernel and the Green function of balls in the complex hyperbolic space. The description is in terms of the hypergeometric function and unitary spherical harmonics in ℂⁿ.