Un résultat d'homogénéisation pour une classe de problèmes de diffusion non linéaires stationnaires
Usually the problem of drift estimation for a diffusion process is considered under the hypothesis of ergodicity. It is less often considered under the hypothesis of null-recurrence, simply because there are fewer limit theorems and existing ones do not apply to the whole null-recurrent class. The aim of this paper is to provide some limit theorems for additive functionals and martingales of a general (ergodic or null) recurrent diffusion which would allow us to have a somewhat unified approach...
We prove that, up to scalar multiples, there exists only one local regular Dirichlet form on a generalized Sierpi´nski carpet that is invariant with respect to the local symmetries of the carpet. Consequently, for each such fractal the law of Brownian motion is uniquely determined and the Laplacian is well defined.