Page 1 Next

Displaying 1 – 20 of 55

Showing per page

Second-order asymptotic expansion for a non-synchronous covariation estimator

Arnak Dalalyan, Nakahiro Yoshida (2011)

Annales de l'I.H.P. Probabilités et statistiques

In this paper, we consider the problem of estimating the covariation of two diffusion processes when observations are subject to non-synchronicity. Building on recent papers [Bernoulli11 (2005) 359–379, Ann. Inst. Statist. Math.60 (2008) 367–406], we derive second-order asymptotic expansions for the distribution of the Hayashi–Yoshida estimator in a fairly general setup including random sampling schemes and non-anticipative random drifts. The key steps leading to our results are a second-order decomposition...

Self-stabilizing processes: uniqueness problem for stationary measures and convergence rate in the small-noise limit

Samuel Herrmann, Julian Tugaut (2012)

ESAIM: Probability and Statistics

In the context of self-stabilizing processes, that is processes attracted by their own law, living in a potential landscape, we investigate different properties of the invariant measures. The interaction between the process and its law leads to nonlinear stochastic differential equations. In [S. Herrmann and J. Tugaut. Electron. J. Probab. 15 (2010) 2087–2116], the authors proved that, for linear interaction and under suitable conditions, there exists a unique symmetric limit measure associated...

Self-stabilizing processes: uniqueness problem for stationary measures and convergence rate in the small-noise limit

Samuel Herrmann, Julian Tugaut (2012)

ESAIM: Probability and Statistics

In the context of self-stabilizing processes, that is processes attracted by their own law, living in a potential landscape, we investigate different properties of the invariant measures. The interaction between the process and its law leads to nonlinear stochastic differential equations. In [S. Herrmann and J. Tugaut. Electron. J. Probab. 15 (2010) 2087–2116], the authors proved that, for linear interaction and under suitable conditions, there...

Sharp estimates of the Green function of hyperbolic Brownian motion

Kamil Bogus, Tomasz Byczkowski, Jacek Małecki (2015)

Studia Mathematica

The main objective of the work is to provide sharp two-sided estimates of the λ-Green function, λ ≥ 0, of the hyperbolic Brownian motion of a half-space. We rely on the recent results obtained by K. Bogus and J. Małecki (2015), regarding precise estimates of the Bessel heat kernel for half-lines. We also substantially use the results of H. Matsumoto and M. Yor (2005) on distributions of exponential functionals of Brownian motion.

Shrinkage strategies in some multiple multi-factor dynamical systems

Sévérien Nkurunziza (2012)

ESAIM: Probability and Statistics

In this paper, we are interested in estimation problem for the drift parameters matrices of m independent multivariate diffusion processes. More specifically, we consider the case where the m-parameters matrices are supposed to satisfy some uncertain constraints. Given such an uncertainty, we develop shrinkage estimators which improve over the performance of the maximum likelihood estimator (MLE). Under an asymptotic distributional quadratic risk criterion, we study the relative dominance of the...

Shrinkage strategies in some multiple multi-factor dynamical systems

Sévérien Nkurunziza (2012)

ESAIM: Probability and Statistics

In this paper, we are interested in estimation problem for the drift parameters matrices of m independent multivariate diffusion processes. More specifically, we consider the case where the m-parameters matrices are supposed to satisfy some uncertain constraints. Given such an uncertainty, we develop shrinkage estimators which improve over the performance of the maximum likelihood estimator (MLE). Under an asymptotic distributional quadratic risk criterion, we study the relative dominance of the...

Smoothing and occupation measures of stochastic processes

Mario Wschebor (2006)

Annales de la faculté des sciences de Toulouse Mathématiques

This is a review paper about some problems of statistical inference for one-parameter stochastic processes, mainly based upon the observation of a convolution of the path with a non-random kernel. Most of the results are known and presented without proofs. The tools are first and second order approximation theorems of the occupation measure of the path, by means of functionals defined on the smoothed paths. Various classes of stochastic processes are considered starting with the Wiener process,...

Sobolev-Kantorovich Inequalities

Michel Ledoux (2015)

Analysis and Geometry in Metric Spaces

In a recent work, E. Cinti and F. Otto established some new interpolation inequalities in the study of pattern formation, bounding the Lr(μ)-norm of a probability density with respect to the reference measure μ by its Sobolev norm and the Kantorovich-Wasserstein distance to μ. This article emphasizes this family of interpolation inequalities, called Sobolev-Kantorovich inequalities, which may be established in the rather large setting of non-negatively curved (weighted) Riemannian manifolds by means...

Some Dirichlet spaces obtained by subordinate reflected diffusions.

Niels Jacob, René L. Schilling (1999)

Revista Matemática Iberoamericana

In this paper we want to show how well-known results from the theory of (regular) elliptic boundary value problems, function spaces and interpolation, subordination in the sense of Bochner and Dirichlet forms can be combined and how one can thus get some new aspects in each of these fields.

Currently displaying 1 – 20 of 55

Page 1 Next