The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A model of the Brownian motion defined in terms of the natural divisors is proposed and weak convergence of the related measures in the space [0,1] is proved. An analogon of the Erdös arcsine law, known for the prime divisors [6] (see [14] for the proof), is obtained. These results together with the author’s investigation [15] extend the systematic study [9] of the distribution of natural divisors. Our approach is based upon the functional limit theorems of probability theory.
Atsuji proposed some integrals along Brownian paths to study the Nevanlinna characteristic function T(f,r) when f is meromorphic in the unit disk D. We show that his criterios does not apply to the basic case when f is a modular elliptic function. The divergence of similar integrals computed along the geodesic flow is also proved. (A)
A well-known mathematical property of the particle paths of Brownian motion is that such paths are, with probability one, everywhere continuous and nowhere differentiable. R. Feynman (1965) and elsewhere asserted without proof that an analogous property holds for the sample paths (or possible paths) of a non-relativistic quantum mechanical particle to which a conservative force is applied. Using the non-absolute integration theory of Kurzweil and Henstock, this article provides an introductory proof...
Currently displaying 1 –
10 of
10