Inégalité de Hardy, semimartingales, et faux-amis
We consider an infinite system of hard balls in undergoing Brownian motions and submitted to a smooth pair potential. It is modelized by an infinite-dimensional stochastic differential equation with an infinite-dimensional local time term. Existence and uniqueness of a strong solution is proven for such an equation with fixed deterministic initial condition. We also show that Gibbs measures are reversible measures.
We show that if the set of all bounded strongly continuous cosine families on a Banach space X is treated as a metric space under the metric of the uniform convergence associated with the operator norm on the space 𝓛(X) of all bounded linear operators on X, then the isolated points of this set are precisely the scalar cosine families. By definition, a scalar cosine family is a cosine family whose members are all scalar multiples of the identity operator. We also show that if the sets of all bounded...