Parking functions, empirical processes, and the width of rooted labeled trees.
We consider a left-transient random walk in a random environment on that will be disturbed by cookies inducing a drift to the right of strength 1. The number of cookies per site is i.i.d. and independent of the environment. Criteria for recurrence and transience of the random walk are obtained. For this purpose we use subcritical branching processes in random environments with immigration and formulate criteria for recurrence and transience for these processes.
We develop potential-theoretical methods in the construction of measure-valued branching processes.We complete results of P. J. Fitzsimmons and E. B. Dynkin on the construction, regularity and other properties of the superprocess associated with a given right process and a branching mechanism.
On définit de nouveaux processus de naissance à temps discret; la population est, à chaque instant, organisée en graphe. Pour obtenir la -ième génération on remplace aléatoirement les sommets de la -ième génération par des graphes que l’on accroche convenablement les uns aux autres. On autorise une certaine dépendance entre les substitutions de sommets voisins. On étudie, pour certains processus surcritiques, la croissance de la population et la structure des graphes générés : sous des hypothèses...
We present a new pruning procedure on discrete trees by adding marks on the nodes of trees. This procedure allows us to construct and study a tree-valued Markov process by pruning Galton–Watson trees and an analogous process by pruning a critical or subcritical Galton–Watson tree conditioned to be infinite. Under a mild condition on offspring distributions, we show that the process run until its ascension time has a representation in terms of . A similar result was obtained by Aldous and...