The analytic fixed point function. II.
Page 1 Next
Mejía, Diego, Pommerenke, Christian (2006)
Revista Colombiana de Matemáticas
Peter Jagers, Olle Nerman (1996)
Séminaire de probabilités de Strasbourg
Jacques Neveu, James W. Pitman (1989)
Séminaire de probabilités de Strasbourg
Janson, Svante, Chassaing, Philippe (2004)
Electronic Communications in Probability [electronic only]
János Engländer, Ross G. Pinsky (2006)
Annales de l'I.H.P. Probabilités et statistiques
Bruno Jaffuel (2012)
Annales de l'I.H.P. Probabilités et statistiques
We study a branching random walk on with an absorbing barrier. The position of the barrier depends on the generation. In each generation, only the individuals born below the barrier survive and reproduce. Given a reproduction law, Biggins et al. [Ann. Appl. Probab.1(1991) 573–581] determined whether a linear barrier allows the process to survive. In this paper, we refine their result: in the boundary case in which the speed of the barrier matches the speed of the minimal position of a particle...
J.B. Walsh, R.T. Smythe (1973)
Inventiones mathematicae
Van Fossen Conrad, Eric, Flajolet, Philippe (2005)
Séminaire Lotharingien de Combinatoire [electronic only]
Brodskii, R.Ye., Virchenko, Yu.P. (2006)
Abstract and Applied Analysis
Gerold Alsmeyer, Uwe Rösler (2006)
Annales de l'I.H.P. Probabilités et statistiques
Kalas, J. (1996)
Acta Mathematica Universitatis Comenianae. New Series
Edwin A. Perkins, S. James Taylor (1998)
Annales de l'I.H.P. Probabilités et statistiques
Pascal Maillard (2013)
Annales de l'I.H.P. Probabilités et statistiques
We study supercritical branching Brownian motion on the real line starting at the origin and with constant drift . At the point , we add an absorbing barrier, i.e. individuals touching the barrier are instantly killed without producing offspring. It is known that there is a critical drift , such that this process becomes extinct almost surely if and only if . In this case, if denotes the number of individuals absorbed at the barrier, we give an asymptotic for as goes to infinity. If ...
Laurent Ménard (2010)
Annales de l'I.H.P. Probabilités et statistiques
We prove that the uniform infinite random quadrangulations defined respectively by Chassaing–Durhuus and Krikun have the same distribution.
Simon C. Harris, Matthew I. Roberts (2012)
Annales de l'I.H.P. Probabilités et statistiques
For a set A ⊂ C[0, ∞), we give new results on the growth of the number of particles in a branching Brownian motion whose paths fall within A. We show that it is possible to work without rescaling the paths. We give large deviations probabilities as well as a more sophisticated proof of a result on growth in the number of particles along certain sets of paths. Our results reveal that the number of particles can oscillate dramatically. We also obtain new results on the number of particles near the...
Drmota, Michael, Gittenberger, Bernhard (2004)
Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only]
C. Cocozza, M. Roussignol (1980)
Annales de l'I.H.P. Probabilités et statistiques
Parthasarathy, P.R., Lenin, R.B. (2000)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Parthasarathy, P.R., Selvaraju, N. (2001)
Mathematical Problems in Engineering
Swift, Randall J. (2001)
International Journal of Mathematics and Mathematical Sciences
Page 1 Next