Displaying 41 – 60 of 2836

Showing per page

A Donsker theorem to simulate one-dimensional processes with measurable coefficients

Pierre Étoré, Antoine Lejay (2007)

ESAIM: Probability and Statistics

In this paper, we prove a Donsker theorem for one-dimensional processes generated by an operator with measurable coefficients. We construct a random walk on any grid on the state space, using the transition probabilities of the approximated process, and the conditional average times it spends on each cell of the grid. Indeed we can compute these quantities by solving some suitable elliptic PDE problems.

A family of L 2-spaces associated to the jumps of a Markov process

Valentin Grecea (2011)

Open Mathematics

Given the (canonical) Markov process associated with a sufficiently general semigroup (P t), we establish a result concerning the uniform completeness of a family of L 2-spaces naturally associated with the jumps of the process. An application of this result is presented.

A Gaussian oscillator.

Burdzy, Krzysztof, White, David (2004)

Electronic Communications in Probability [electronic only]

A Gauss-Kuzmin theorem for the Rosen fractions

Gabriela I. Sebe (2002)

Journal de théorie des nombres de Bordeaux

Using the natural extensions for the Rosen maps, we give an infinite-order-chain representation of the sequence of the incomplete quotients of the Rosen fractions. Together with the ergodic behaviour of a certain homogeneous random system with complete connections, this allows us to solve a variant of Gauss-Kuzmin problem for the above fraction expansion.

Currently displaying 41 – 60 of 2836