Displaying 121 – 140 of 280

Showing per page

On suprema of Lévy processes and application in risk theory

Renming Song, Zoran Vondraček (2008)

Annales de l'I.H.P. Probabilités et statistiques

Let X̂=C−Y where Y is a general one-dimensional Lévy process and C an independent subordinator. Consider the times when a new supremum of X̂ is reached by a jump of the subordinator C. We give a necessary and sufficient condition in order for such times to be discrete. When this is the case and X̂ drifts to −∞, we decompose the absolute supremum of X̂ at these times, and derive a Pollaczek–Hinchin-type formula for the distribution function of the supremum.

On the analogy between self-gravitating Brownian particles and bacterial populations

Pierre-Henri Chavanis, Magali Ribot, Carole Rosier, Clément Sire (2004)

Banach Center Publications

We develop the analogy between self-gravitating Brownian particles and bacterial populations. In the high friction limit, the self-gravitating Brownian gas is described by the Smoluchowski-Poisson system. These equations can develop a self-similar collapse leading to a finite time singularity. Coincidentally, the Smoluchowski-Poisson system corresponds to a simplified version of the Keller-Segel model of bacterial populations. In this biological context, it describes the chemotactic aggregation...

On the asymptotic variance in the central limit theorem for particle filters

Benjamin Favetto (2012)

ESAIM: Probability and Statistics

Particle filter algorithms approximate a sequence of distributions by a sequence of empirical measures generated by a population of simulated particles. In the context of Hidden Markov Models (HMM), they provide approximations of the distribution of optimal filters associated to these models. For a given set of observations, the behaviour of particle filters, as the number of particles tends to infinity, is asymptotically Gaussian, and the asymptotic variance in the central limit theorem depends...

On the asymptotic variance in the central limit theorem for particle filters

Benjamin Favetto (2012)

ESAIM: Probability and Statistics

Particle filter algorithms approximate a sequence of distributions by a sequence of empirical measures generated by a population of simulated particles. In the context of Hidden Markov Models (HMM), they provide approximations of the distribution of optimal filters associated to these models. For a given set of observations, the behaviour of particle filters, as the number of particles tends to infinity, is asymptotically Gaussian, and the asymptotic variance in the central limit theorem depends...

Currently displaying 121 – 140 of 280