Displaying 21 – 40 of 119

Showing per page

Anomalous heat-kernel decay for random walk among bounded random conductances

N. Berger, M. Biskup, C. E. Hoffman, G. Kozma (2008)

Annales de l'I.H.P. Probabilités et statistiques

We consider the nearest-neighbor simple random walk on ℤd, d≥2, driven by a field of bounded random conductances ωxy∈[0, 1]. The conductance law is i.i.d. subject to the condition that the probability of ωxy>0 exceeds the threshold for bond percolation on ℤd. For environments in which the origin is connected to infinity by bonds with positive conductances, we study the decay of the 2n-step return probability 𝖯 ω 2 n ( 0 , 0 ) . We prove that 𝖯 ω 2 n ( 0 , 0 ) is bounded by a random constant timesn−d/2 in d=2, 3, while it...

Averaged large deviations for random walk in a random environment

Atilla Yilmaz (2010)

Annales de l'I.H.P. Probabilités et statistiques

In his 2003 paper, Varadhan proves the averaged large deviation principle for the mean velocity of a particle taking a nearest-neighbor random walk in a uniformly elliptic i.i.d. environment on ℤd with d≥1, and gives a variational formula for the corresponding rate function Ia. Under Sznitman’s transience condition (T), we show that Ia is strictly convex and analytic on a non-empty open set , and that the true velocity of the particle is an element (resp. in the boundary) of when the walk is non-nestling...

Ballistic regime for random walks in random environment with unbounded jumps and Knudsen billiards

Francis Comets, Serguei Popov (2012)

Annales de l'I.H.P. Probabilités et statistiques

We consider a random walk in a stationary ergodic environment in , with unbounded jumps. In addition to uniform ellipticity and a bound on the tails of the possible jumps, we assume a condition of strong transience to the right which implies that there are no “traps.” We prove the law of large numbers with positive speed, as well as the ergodicity of the environment seen from the particle. Then, we consider Knudsen stochastic billiard with a drift in a random tube in d , d 3 , which serves as environment....

Brownian motion and parabolic Anderson model in a renormalized Poisson potential

Xia Chen, Alexey M. Kulik (2012)

Annales de l'I.H.P. Probabilités et statistiques

A method known as renormalization is proposed for constructing some more physically realistic random potentials in a Poisson cloud. The Brownian motion in the renormalized random potential and related parabolic Anderson models are modeled. With the renormalization, for example, the models consistent to Newton’s law of universal attraction can be rigorously constructed.

Central Limit Theorem for Diffusion Processes in an Anisotropic Random Environment

Ernest Nieznaj (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

We prove the central limit theorem for symmetric diffusion processes with non-zero drift in a random environment. The case of zero drift has been investigated in e.g. [18], [7]. In addition we show that the covariance matrix of the limiting Gaussian random vector corresponding to the diffusion with drift converges, as the drift vanishes, to the covariance of the homogenized diffusion with zero drift.

Conditional limit theorems for intermediately subcritical branching processes in random environment

V. I. Afanasyev, Ch. Böinghoff, G. Kersting, V. A. Vatutin (2014)

Annales de l'I.H.P. Probabilités et statistiques

For a branching process in random environment it is assumed that the offspring distribution of the individuals varies in a random fashion, independently from one generation to the other. For the subcritical regime a kind of phase transition appears. In this paper we study the intermediately subcritical case, which constitutes the borderline within this phase transition. We study the asymptotic behavior of the survival probability. Next the size of the population and the shape of the random environment...

Convergence of simple random walks on random discrete trees to brownian motion on the continuum random tree

David Croydon (2008)

Annales de l'I.H.P. Probabilités et statistiques

In this article it is shown that the brownian motion on the continuum random tree is the scaling limit of the simple random walks on any family of discrete n-vertex ordered graph trees whose search-depth functions converge to the brownian excursion as n→∞. We prove both a quenched version (for typical realisations of the trees) and an annealed version (averaged over all realisations of the trees) of our main result. The assumptions of the article cover the important example of simple random walks...

Copolymer at selective interfaces and pinning potentials : weak coupling limits

Nicolas Petrelis (2009)

Annales de l'I.H.P. Probabilités et statistiques

We consider a simple random walk of length N, denoted by (Si)i∈{1, …, N}, and we define (wi)i≥1 a sequence of centered i.i.d. random variables. For K∈ℕ we define ((γi−K, …, γiK))i≥1 an i.i.d sequence of random vectors. We set β∈ℝ, λ≥0 and h≥0, and transform the measure on the set of random walk trajectories with the hamiltonian λ∑i=1N(wi+h)sign(Si)+β∑j=−KK∑i=1Nγij1{Si=j}. This transformed path measure describes an hydrophobic(philic) copolymer interacting with a layer of width 2K around an interface...

Directed polymer in random environment and last passage percolation*

Philippe Carmona (2010)

ESAIM: Probability and Statistics

The sequence of random probability measures νn that gives a path of length n, 1 n times the sum of the random weights collected along the paths, is shown to satisfy a large deviations principle with good rate function the Legendre transform of the free energy of the associated directed polymer in a random environment. Consequences on the asymptotics of the typical number of paths whose collected weight is above a fixed proportion are then drawn.

Disorder relevance at marginality and critical point shift

Giambattista Giacomin, Hubert Lacoin, Fabio Lucio Toninelli (2011)

Annales de l'I.H.P. Probabilités et statistiques

Recently the renormalization group predictions on the effect of disorder on pinning models have been put on mathematical grounds. The picture is particularly complete if the disorder is relevant or irrelevant in the Harris criterion sense: the question addressed is whether quenched disorder leads to a critical behavior which is different from the one observed in the pure, i.e. annealed, system. The Harris criterion prediction is based on the sign of the specific heat exponent of the pure system,...

Edge-reinforced random walk, vertex-reinforced jump process and the supersymmetric hyperbolic sigma model

Christophe Sabot, Pierre Tarrès (2015)

Journal of the European Mathematical Society

Edge-reinforced random walk (ERRW), introduced by Coppersmith and Diaconis in 1986 [8], is a random process which takes values in the vertex set of a graph G and is more likely to cross edges it has visited before. We show that it can be represented in terms of a vertex-reinforced jump process (VRJP) with independent gamma conductances; the VRJP was conceived by Werner and first studied by Davis and Volkov [10, 11], and is a continuous-time process favouring sites with more local time. We calculate,...

Einstein relation for biased random walk on Galton–Watson trees

Gerard Ben Arous, Yueyun Hu, Stefano Olla, Ofer Zeitouni (2013)

Annales de l'I.H.P. Probabilités et statistiques

We prove the Einstein relation, relating the velocity under a small perturbation to the diffusivity in equilibrium, for certain biased random walks on Galton–Watson trees. This provides the first example where the Einstein relation is proved for motion in random media with arbitrarily slow traps.

Excited against the tide: a random walk with competing drifts

Mark Holmes (2012)

Annales de l'I.H.P. Probabilités et statistiques

We study excited random walks in i.i.d. random cookie environments in high dimensions, where the k th cookie at a site determines the transition probabilities (to the left and right) for the k th departure from that site. We show that in high dimensions, when the expected right drift of the first cookie is sufficiently large, the velocity is strictly positive, regardless of the strengths and signs of subsequent cookies. Under additional conditions on the cookie environment, we show that the limiting...

Currently displaying 21 – 40 of 119