Conventional Statistical Problem with Irregular Minimax Behavior.
This paper deals with convergence model of interest rates, which explains the evolution of interest rate in connection with the adoption of Euro currency. Its dynamics is described by two stochastic differential equations – the domestic and the European short rate. Bond prices are then solutions to partial differential equations. For the special case with constant volatilities closed form solutions for bond prices are known. Substituting its constant volatilities by instantaneous volatilities we...
In this research, strong convergence properties of the tail probability for weighted sums of negatively orthant dependent random variables are discussed. Some sharp theorems for weighted sums of arrays of rowwise negatively orthant dependent random variables are established. These results not only extend the corresponding ones of Cai [4], Wang et al. [19] and Shen [13], but also improve them, respectively.
General conditions for convergence rates of nonparametric orthogonal series estimators of the regression function f(x)=E(Y | X = x) are considered. The estimators are obtained by the least squares method on the basis of a random observation sample (Yi,Xi), i=1,...,n, where have marginal distribution with density and Var( Y | X = x) is bounded on A. Convergence rates of the errors and for the estimator , constructed using an orthonormal system , k=1,2,..., in are obtained.
La convergencia casi segura de una sucesión de variables aleatorias, con respecto a PX,Q (distribución predictiva), se estudia en relación con la convergencia casi segura, con respecto a PX,θ (para todo θ ∈ Θ), donde {PX,θ}θ ∈ Θ es una familia de modelos de probabilidad sobre el espacio muestral χ.Como consecuencia, se estudia la convergencia casi segura del vector de probabilidad a posteriori con respecto a PX,Q.
En este trabajo se caracteriza la simetría de la J-divergencia generalizada en términos del parámetro y de la función que la determina. Se plantea seguidamente la convexidad y la simetrización en función del parámetro, atendiendo a la forma de la función φ(t) que la determina. Finalmente, se revisa la convexidad en función de las variables atendiendo a la concavidad y convexidad de las funciones φ(t) y 1/φ''(t).