Previous Page 5

Displaying 81 – 96 of 96

Showing per page

Exact adaptive pointwise estimation on Sobolev classes of densities

Cristina Butucea (2010)

ESAIM: Probability and Statistics

The subject of this paper is to estimate adaptively the common probability density of n independent, identically distributed random variables. The estimation is done at a fixed point x 0 , over the density functions that belong to the Sobolev class Wn(β,L). We consider the adaptive problem setup, where the regularity parameter β is unknown and varies in a given set Bn. A sharp adaptive estimator is obtained, and the explicit asymptotical constant, associated to its rate of convergence is found.

Exact laws for sums of ratios of order statistics from the Pareto distribution

André Adler (2006)

Open Mathematics

Consider independent and identically distributed random variables {X nk, 1 ≤ k ≤ m, n ≤ 1} from the Pareto distribution. We select two order statistics from each row, X n(i) ≤ X n(j), for 1 ≤ i < j ≤ = m. Then we test to see whether or not Laws of Large Numbers with nonzero limits exist for weighted sums of the random variables R ij = X n(j)/X n(i).

Exact slopes of the rank statistics for the two-sample case under discrete distributions

Dana Vorlíčková (1981)

Aplikace matematiky

The author studies the linear rank statistics for testing the pypothesis of randomness against the alternative of two samples provided both are drawn grom discrete (integer-valued) distributions. The weak law of large numbers and the exact slope are obtained for statistics with randomized ranks of with averaged scores.

Explicit Karhunen-Loève expansions related to the Green function of the Laplacian

J.-R. Pycke (2006)

Banach Center Publications

Karhunen-Loève expansions of Gaussian processes have numerous applications in Probability and Statistics. Unfortunately the set of Gaussian processes with explicitly known spectrum and eigenfunctions is narrow. An interpretation of three historical examples enables us to understand the key role of the Laplacian. This allows us to extend the set of Gaussian processes for which a very explicit Karhunen-Loève expansion can be derived.

Exponential smoothing and resampling techniques in time series prediction

Maria Manuela Neves, Clara Cordeiro (2010)

Discussiones Mathematicae Probability and Statistics

Time series analysis deals with records that are collected over time. The objectives of time series analysis depend on the applications, but one of the main goals is to predict future values of the series. These values depend, usually in a stochastic manner, on the observations available at present. Such dependence has to be considered when predicting the future from its past, taking into account trend, seasonality and other features of the data. Some of the most successful forecasting methods are...

Extremal behaviour of stationary processes: the calibration technique in the extremal index estimation

D. Prata Gomes, Maria Manuela Neves (2010)

Discussiones Mathematicae Probability and Statistics

Classical extreme value methods were derived when the underlying process is assumed to be a sequence of independent random variables. However when observations are taken along the time and/or the space the independence is an unrealistic assumption. A parameter that arises in this situation, characterizing the degree of local dependence in the extremes of a stationary series, is the extremal index, θ. In several areas such as hydrology, telecommunications, finance and environment, for example, the...

Extremal (in)dependence of a maximum autoregressive process

Marta Ferreira (2013)

Discussiones Mathematicae Probability and Statistics

Maximum autoregressive processes like MARMA (Davis and Resnick, [5] 1989) or power MARMA (Ferreira and Canto e Castro, [12] 2008) have singular joint distributions, an unrealistic feature in most applications. To overcome this pitfall, absolute continuous versions were presented in Alpuim and Athayde [2] (1990) and Ferreira and Canto e Castro [14] (2010b), respectively. We consider an extended version of absolute continuous maximum autoregressive processes that accommodates both asymptotic tail...

Extreme order statistics in an equally correlated Gaussian array

Mateusz Wiśniewski (1994)

Applicationes Mathematicae

This paper contains the results concerning the weak convergence of d-dimensional extreme order statistics in a Gaussian, equally correlated array. Three types of limit distributions are found and sufficient conditions for the existence of these distributions are given.

Extreme values and kernel estimates of point processes boundaries

Stéphane Girard, Pierre Jacob (2004)

ESAIM: Probability and Statistics

We present a method for estimating the edge of a two-dimensional bounded set, given a finite random set of points drawn from the interior. The estimator is based both on a Parzen-Rosenblatt kernel and extreme values of point processes. We give conditions for various kinds of convergence and asymptotic normality. We propose a method of reducing the negative bias and edge effects, illustrated by some simulations.

Extreme values and kernel estimates of point processes boundaries

Stéphane Girard, Pierre Jacob (2010)

ESAIM: Probability and Statistics

We present a method for estimating the edge of a two-dimensional bounded set, given a finite random set of points drawn from the interior. The estimator is based both on a Parzen-Rosenblatt kernel and extreme values of point processes. We give conditions for various kinds of convergence and asymptotic normality. We propose a method of reducing the negative bias and edge effects, illustrated by some simulations.

Extremes of spheroid shape factor based on two dimensional profiles

Daniel Hlubinka (2006)

Kybernetika

The extremal shape factor of spheroidal particles is studied. Three dimensional particles are considered to be observed via their two dimensional profiles and the problem is to predict the extremal shape factor in a given size class. We proof the stability of the domain of attraction of the spheroid’s and its profile shape factor under a tail equivalence condition. We show namely that the Farlie–Gumbel–Morgenstern bivariate distributions gives the tail uniformity. We provide a way how to find normalising...

Currently displaying 81 – 96 of 96

Previous Page 5