Displaying 61 – 80 of 96

Showing per page

Estimation of reduced Palm distributions by random methods for Cox processes with unknown probability law

Emmanuelle Crétois (1995)

Applicationes Mathematicae

Let N i , i ≥ 1, be i.i.d. observable Cox processes on [a,b] directed by random measures Mi. Assume that the probability law of the Mi is completely unknown. Random techniques are developed (we use data from the processes N 1 ,..., N n to construct a partition of [a,b] whose extremities are random) to estimate L(μ,g) = E(exp(-(N(g) - μ(g))) | N - μ ≥ 0).

Estimation of second order parameters using probability weighted moments

Julien Worms, Rym Worms (2012)

ESAIM: Probability and Statistics

The P.O.T. method (Peaks Over Threshold) consists in using the generalized Pareto distribution (GPD) as an approximation for the distribution of excesses over a high threshold. In this work, we use a refinement of this approximation in order to estimate second order parameters of the model using the method of probability-weighted moments (PWM): in particular, this leads to the introduction of a new estimator for the second order parameter ρ, which will be compared to other recent estimators through...

Estimation of second order parameters using probability weighted moments

Julien Worms, Rym Worms (2012)

ESAIM: Probability and Statistics

The P.O.T. method (Peaks Over Threshold) consists in using the generalized Pareto distribution (GPD) as an approximation for the distribution of excesses over a high threshold. In this work, we use a refinement of this approximation in order to estimate second order parameters of the model using the method of probability-weighted moments (PWM): in particular, this leads to the introduction of a new estimator for the second order parameter ρ, which will be compared to other recent estimators through...

Estimation of summary characteristics from replicated spatial point processes

Zbyněk Pawlas (2011)

Kybernetika

Summary characteristics play an important role in the analysis of spatial point processes. We discuss various approaches to estimating summary characteristics from replicated observations of a stationary point process. The estimators are compared with respect to their integrated squared error. Simulations for three basic types of point processes help to indicate the best way of pooling the subwindow estimators. The most appropriate way depends on the particular summary characteristic, edge-correction...

Estimation of the density of a determinantal process

Yannick Baraud (2013)

Confluentes Mathematici

We consider the problem of estimating the density Π of a determinantal process N from the observation of n independent copies of it. We use an aggregation procedure based on robust testing to build our estimator. We establish non-asymptotic risk bounds with respect to the Hellinger loss and deduce, when n goes to infinity, uniform rates of convergence over classes of densities Π of interest.

Estimation of the hazard function in a semiparametric model with covariate measurement error

Marie-Laure Martin-Magniette, Marie-Luce Taupin (2009)

ESAIM: Probability and Statistics

We consider a failure hazard function, conditional on a time-independent covariate Z, given by η γ 0 ( t ) f β 0 ( Z ) . The baseline hazard function η γ 0 and the relative risk f β 0 both belong to parametric families with θ 0 = ( β 0 , γ 0 ) m + p . The covariate Z has an unknown density and is measured with an error through an additive error model U = Z + ε where ε is a random variable, independent from Z, with known density f ε . We observe a n-sample (Xi, Di, Ui), i = 1, ..., n, where Xi is the minimum between the failure time and the censoring time, and...

Estimation of the transition density of a Markov chain

Mathieu Sart (2014)

Annales de l'I.H.P. Probabilités et statistiques

We present two data-driven procedures to estimate the transition density of an homogeneous Markov chain. The first yields a piecewise constant estimator on a suitable random partition. By using an Hellinger-type loss, we establish non-asymptotic risk bounds for our estimator when the square root of the transition density belongs to possibly inhomogeneous Besov spaces with possibly small regularity index. Some simulations are also provided. The second procedure is of theoretical interest and leads...

Estimator selection in the gaussian setting

Yannick Baraud, Christophe Giraud, Sylvie Huet (2014)

Annales de l'I.H.P. Probabilités et statistiques

We consider the problem of estimating the mean f of a Gaussian vector Y with independent components of common unknown variance σ 2 . Our estimation procedure is based on estimator selection. More precisely, we start with an arbitrary and possibly infinite collection 𝔽 of estimators of f based on Y and, with the same data Y , aim at selecting an estimator among 𝔽 with the smallest Euclidean risk. No assumptions on the estimators are made and their dependencies with respect to Y may be unknown. We establish...

Estimators of g-monotone dependence functions

Andrzej Krajka (1998)

Applicationes Mathematicae

The notion of g-monotone dependence function introduced in [4] generalizes the notions of the monotone dependence function and the quantile monotone dependence function defined in [2], [3] and [6]. In this paper we study the asymptotic behaviour of sample g-monotone dependence functions and their strong properties.

Evaluating improvements of records

Tomasz Rychlik (1997)

Applicationes Mathematicae

We evaluate the extreme differences between the consecutive expected record values appearing in an arbitrary i.i.d. sample in the standard deviation units. We also discuss the relevant estimates for parent distributions coming from restricted families and other scale units.

Evaluations of expected generalized order statistics in various scale units

Erhard Cramer, Udo Kamps, Tomasz Rychlik (2002)

Applicationes Mathematicae

We present sharp upper bounds for the deviations of expected generalized order statistics from the population mean in various scale units generated by central absolute moments. No restrictions are imposed on the parameters of the generalized order statistics model. The results are derived by combining the unimodality property of the uniform generalized order statistics with the Moriguti and Hölder inequalities. They generalize evaluations for specific models of ordered observations.

Exact adaptive pointwise estimation on Sobolev classes of densities

Cristina Butucea (2001)

ESAIM: Probability and Statistics

The subject of this paper is to estimate adaptively the common probability density of n independent, identically distributed random variables. The estimation is done at a fixed point x 0 , over the density functions that belong to the Sobolev class W n ( β , L ) . We consider the adaptive problem setup, where the regularity parameter β is unknown and varies in a given set B n . A sharp adaptive estimator is obtained, and the explicit asymptotical constant, associated to its rate of convergence is found.

Currently displaying 61 – 80 of 96