Displaying 241 – 260 of 838

Showing per page

Estimation for misspecified ergodic diffusion processes from discrete observations

Masayuki Uchida, Nakahiro Yoshida (2011)

ESAIM: Probability and Statistics

The joint estimation of both drift and diffusion coefficient parameters is treated under the situation where the data are discretely observed from an ergodic diffusion process and where the statistical model may or may not include the true diffusion process. We consider the minimum contrast estimator, which is equivalent to the maximum likelihood type estimator, obtained from the contrast function based on a locally Gaussian approximation of the transition density. The asymptotic normality of the...

Estimation for misspecified ergodic diffusion processes from discrete observations

Masayuki Uchida, Nakahiro Yoshida (2012)

ESAIM: Probability and Statistics

The joint estimation of both drift and diffusion coefficient parameters is treated under the situation where the data are discretely observed from an ergodic diffusion process and where the statistical model may or may not include the true diffusion process. We consider the minimum contrast estimator, which is equivalent to the maximum likelihood type estimator, obtained from the contrast function based on a locally Gaussian approximation of the transition density. The asymptotic normality of...

Estimation in models driven by fractional brownian motion

Corinne Berzin, José R. León (2008)

Annales de l'I.H.P. Probabilités et statistiques

Let {bH(t), t∈ℝ} be the fractional brownian motion with parameter 0<H<1. When 1/2<H, we consider diffusion equations of the type X(t)=c+∫0tσ(X(u)) dbH(u)+∫0tμ(X(u)) du. In different particular models where σ(x)=σ or σ(x)=σ  x and μ(x)=μ or μ(x)=μ  x, we propose a central limit theorem for estimators of H and of σ based on regression methods. Then we give tests of the hypothesis on σ for these models. We also consider functional estimation on σ(⋅)...

Estimation of a Regression Function on a Point Process and its Application to Financial Ruin Risk Forecast

Dia, Galaye, Kone, Abdoulaye (2009)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary 60G55; secondary 60G25.We estimate a regression function on a point process by the Tukey regressogram method in a general setting and we give an application in the case of a Risk Process. We show among other things that, in classical Poisson model with parameter r, if W is the amount of the claim with finite espectation E(W) = m, Sn (resp. Rn) the accumulated interval waiting time for successive claims (resp. the aggregate claims amount) up to the...

Estimation of anisotropic gaussian fields through Radon transform

Hermine Biermé, Frédéric Richard (2008)

ESAIM: Probability and Statistics

We estimate the anisotropic index of an anisotropic fractional brownian field. For all directions, we give a convergent estimator of the value of the anisotropic index in this direction, based on generalized quadratic variations. We also prove a central limit theorem. First we present a result of identification that relies on the asymptotic behavior of the spectral density of a process. Then, we define Radon transforms of the anisotropic fractional brownian field and prove that these processes admit...

Estimation of anisotropic Gaussian fields through Radon transform

Hermine Biermé, Frédéric Richard (2007)

ESAIM: Probability and Statistics

We estimate the anisotropic index of an anisotropic fractional Brownian field. For all directions, we give a convergent estimator of the value of the anisotropic index in this direction, based on generalized quadratic variations. We also prove a central limit theorem. First we present a result of identification that relies on the asymptotic behavior of the spectral density of a process. Then, we define Radon transforms of the anisotropic fractional Brownian field and prove that these processes...

Estimation of reduced Palm distributions by random methods for Cox processes with unknown probability law

Emmanuelle Crétois (1995)

Applicationes Mathematicae

Let N i , i ≥ 1, be i.i.d. observable Cox processes on [a,b] directed by random measures Mi. Assume that the probability law of the Mi is completely unknown. Random techniques are developed (we use data from the processes N 1 ,..., N n to construct a partition of [a,b] whose extremities are random) to estimate L(μ,g) = E(exp(-(N(g) - μ(g))) | N - μ ≥ 0).

Estimation of summary characteristics from replicated spatial point processes

Zbyněk Pawlas (2011)

Kybernetika

Summary characteristics play an important role in the analysis of spatial point processes. We discuss various approaches to estimating summary characteristics from replicated observations of a stationary point process. The estimators are compared with respect to their integrated squared error. Simulations for three basic types of point processes help to indicate the best way of pooling the subwindow estimators. The most appropriate way depends on the particular summary characteristic, edge-correction...

Estimation of the density of a determinantal process

Yannick Baraud (2013)

Confluentes Mathematici

We consider the problem of estimating the density Π of a determinantal process N from the observation of n independent copies of it. We use an aggregation procedure based on robust testing to build our estimator. We establish non-asymptotic risk bounds with respect to the Hellinger loss and deduce, when n goes to infinity, uniform rates of convergence over classes of densities Π of interest.

Currently displaying 241 – 260 of 838