Displaying 221 – 240 of 566

Showing per page

Computing generalized inverse systems using matrix pencil methods

Andras Varga (2001)

International Journal of Applied Mathematics and Computer Science

We address the numerically reliable computation of generalized inverses of rational matrices in descriptor state-space representation. We put particular emphasis on two classes of inverses: the weak generalized inverse and the Moore-Penrose pseudoinverse. By combining the underlying computational techniques, other types of inverses of rational matrices can be computed as well. The main computational ingredient to determine generalized inverses is the orthogonal reduction of the system matrix pencil...

Computing guided modes for an unbounded stratified medium in integrated optics

Fabrice Mahé (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a finite element method to compute guided modes in a stratified medium. The major difficulty to overcome is related to the unboundedness of the stratified medium. Our method is an alternative to the use of artificial boundary conditions and to the use of integral representation formulae. The domain is bounded in such a way we can write the solution on its lateral boundaries in terms of Fourier series. The series is then truncated for the computations over the bounded domain. The problem...

Computing guided modes for an unbounded stratified medium in integrated optics

Fabrice Mahé (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a finite element method to compute guided modes in a stratified medium. The major difficulty to overcome is related to the unboundedness of the stratified medium. Our method is an alternative to the use of artificial boundary conditions and to the use of integral representation formulae. The domain is bounded in such a way we can write the solution on its lateral boundaries in terms of Fourier series. The series is then truncated for the computations over the bounded domain. The problem...

Computing homology.

Kaczynski, Tomasz, Mischaikow, Konstantin, Mrozek, Marian (2003)

Homology, Homotopy and Applications

Computing the differential of an unfolded contact diffeomorphism

Klaus Böhmer, Drahoslava Janovská, Vladimír Janovský (2003)

Applications of Mathematics

Consider a bifurcation problem, namely, its bifurcation equation. There is a diffeomorphism Φ linking the actual solution set with an unfolded normal form of the bifurcation equation. The differential D Φ ( 0 ) of this diffeomorphism is a valuable information for a numerical analysis of the imperfect bifurcation. The aim of this paper is to construct algorithms for a computation of D Φ ( 0 ) . Singularity classes containing bifurcation points with c o d i m 3 , c o r a n k = 1 are considered.

Computing the distribution of a linear combination of inverted gamma variables

Viktor Witkovský (2001)

Kybernetika

A formula for evaluation of the distribution of a linear combination of independent inverted gamma random variables by one-dimensional numerical integration is presented. The formula is direct application of the inversion formula given by Gil–Pelaez [gil-pelaez]. This method is applied to computation of the generalized p -values used for exact significance testing and interval estimation of the parameter of interest in the Behrens–Fisher problem and for variance components in balanced mixed linear...

Computing the numerical range of Krein space operators

Natalia Bebiano, J. da Providência, A. Nata, J.P. da Providência (2015)

Open Mathematics

Consider the Hilbert space (H,〈• , •〉) equipped with the indefinite inner product[u,v]=v*J u,u,v∈ H, where J is an indefinite self-adjoint involution acting on H. The Krein space numerical range WJ(T) of an operator T acting on H is the set of all the values attained by the quadratic form [Tu,u], with u ∈H satisfying [u,u]=± 1. We develop, implement and test an alternative algorithm to compute WJ(T) in the finite dimensional case, constructing 2 by 2 matrix compressions of T and their easily determined...

Computing with the Square Root of NOT

De Vos, Alexis, De Beule, Jan, Storme, Leo (2009)

Serdica Journal of Computing

To the two classical reversible 1-bit logic gates, i.e. the identity gate (a.k.a. the follower) and the NOT gate (a.k.a. the inverter), we add an extra gate, the square root of NOT. Similarly, we add to the 24 classical reversible 2-bit circuits, both the square root of NOT and the controlled square root of NOT. This leads to a new kind of calculus, situated between classical reversible computing and quantum computing.

Currently displaying 221 – 240 of 566