The search session has expired. Please query the service again.
Displaying 241 –
260 of
498
A pointwise error estimate and an estimate in norm are obtained for a class of external methods approximating boundary value problems. Dependence of a superconvergence phenomenon on the external approximation method is studied. In this general framework, superconvergence at the knot points for piecewise polynomial external methods is established.
We investigate finite element approximations of one-dimensional elliptic control problems. For semidiscretizations and full discretizations with piecewise constant controls we derive error estimates in the maximum norm.
Galerkin reduced-order models for the semi-discrete wave equation, that preserve the second-order structure, are studied. Error bounds for the full state variables are derived in the continuous setting (when the whole trajectory is known) and in the discrete setting when the Newmark average-acceleration scheme is used on the second-order semi-discrete equation. When the approximating subspace is constructed using the proper orthogonal decomposition, the error estimates are proportional to the sums...
For convection-diffusion problems with exponential layers, optimal error estimates for linear finite elements on Shishkin-type meshes are known. We present the first optimal convergence result in an energy norm for a Bakhvalov-type mesh.
Interest in meshfree methods in solving boundary-value problems has grown rapidly in recent years. A meshless method that has attracted considerable interest in the community of computational mechanics is built around the idea of modified local Shepard’s partition of unity. For these kinds of applications it is fundamental to analyze the order of the approximation in the context of Sobolev spaces. In this paper, we study two different techniques for building modified local Shepard’s formulas, and...
Interest in meshfree methods in solving boundary-value problems has grown
rapidly in recent years. A meshless method that has attracted considerable
interest in the community of computational mechanics is built around the
idea of modified local Shepard's partition of unity. For these kinds of
applications it is fundamental to analyze the order of the approximation in
the context of Sobolev spaces. In this paper, we study two different
techniques for building modified local Shepard's formulas, and...
We describe the basic ideas needed to obtain apriori error estimates for a nonlinear convection diffusion equation discretized by higher order conforming finite elements. For simplicity of presentation, we derive the key estimates under simplified assumptions, e.g. Dirichlet-only boundary conditions. The resulting error estimate is obtained using continuous mathematical induction for the space semi-discrete scheme.
Currently displaying 241 –
260 of
498