The numerical computation of a class of divergent integrals
We study the theoretical and numerical coupling of two hyperbolic systems of conservation laws at a fixed interface. As already proven in the scalar case, the coupling preserves in a weak sense the continuity of the solution at the interface without imposing the overall conservativity of the coupled model. We develop a detailed analysis of the coupling in the linear case. In the nonlinear case, we either use a linearized approach or a coupling method based on the solution of a Riemann problem. We...
We study the theoretical and numerical coupling of two hyperbolic systems of conservation laws at a fixed interface. As already proven in the scalar case, the coupling preserves in a weak sense the continuity of the solution at the interface without imposing the overall conservativity of the coupled model. We develop a detailed analysis of the coupling in the linear case. In the nonlinear case, we either use a linearized approach or a coupling method based on the solution of a Riemann problem....
A numerical method for the solution of a second order boundary value problem for differential equation with state dependent deviating argument is studied. Second-order convergence is established and a theorem about the asymptotic expansion of global discretization error is given. This theorem makes it possible to improve the accuracy of the numerical solution by using Richardson extrapolation which results in a convergent method of order three. This is in contrast to boundary value problems for...
This work is concerned with the numerical solution of inviscid compressible fluid flow in moving domains. Specifically, we assume that the boundary part of the domain (impermeable walls) are time dependent. We consider the Euler equations, which describe the movement of inviscid compressible fluids. We present two formulations of the Euler equations in the ALE (Arbitrary Lagrangian-Eulerian) form. These two formulations are discretized in space by the discontinuous Galerkin method. We apply a semi-implicit linearization...