Displaying 241 – 260 of 543

Showing per page

The Mortar finite element method for Bingham fluids

Patrick Hild (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper deals with the flow problem of a viscous plastic fluid in a cylindrical pipe. In order to approximate this problem governed by a variational inequality, we apply the nonconforming mortar finite element method. By using appropriate techniques, we are able to prove the convergence of the method and to obtain the same convergence rate as in the conforming case.

The mortar finite element method for Bingham fluids

Patrick Hild (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with the flow problem of a viscous plastic fluid in a cylindrical pipe. In order to approximate this problem governed by a variational inequality, we apply the nonconforming mortar finite element method. By using appropriate techniques, we are able to prove the convergence of the method and to obtain the same convergence rate as in the conforming case.

The Mortar method in the wavelet context

Silvia Bertoluzza, Valérie Perrier (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper deals with the use of wavelets in the framework of the Mortar method. We first review in an abstract framework the theory of the mortar method for non conforming domain decomposition, and point out some basic assumptions under which stability and convergence of such method can be proven. We study the application of the mortar method in the biorthogonal wavelet framework. In particular we define suitable multiplier spaces for imposing weak continuity. Unlike in the classical mortar method,...

The Mortar Method in the Wavelet Context

Silvia Bertoluzza, Valérie Perrier (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with the use of wavelets in the framework of the Mortar method. We first review in an abstract framework the theory of the mortar method for non conforming domain decomposition, and point out some basic assumptions under which stability and convergence of such method can be proven. We study the application of the mortar method in the biorthogonal wavelet framework. In particular we define suitable multiplier spaces for imposing weak continuity. Unlike in the classical mortar method,...

The multisample version of the Lepage test

František Rublík (2005)

Kybernetika

The two-sample Lepage test, devised for testing equality of the location and scale parameters against the alternative that at least for one of the parameters the equality does not hold, is extended to the general case of k > 1 sampled populations. It is shown that its limiting distribution is the chi-square distribution with 2 ( k - 1 ) degrees of freedom. This k -sample statistic is shown to yield consistent test and a formula for its noncentrality parameter under Pitman alternatives is derived. For some particular...

The Nash-Kuiper process for curves

Vincent Borrelli, Saïd Jabrane, Francis Lazarus, Boris Thibert (2011/2012)

Séminaire de théorie spectrale et géométrie

A strictly short embedding is an embedding of a Riemannian manifold into an Euclidean space that strictly shortens distances. From such an embedding, the Nash-Kuiper process builds a sequence of maps converging toward an isometric embedding. In that paper, we describe this Nash-Kuiper process in the case of curves. We state an explicit formula for the limit normal map and perform its Fourier series expansion. We then adress the question of Holder regularity of the limit map.

The norm convergence of a Magnus expansion method

András Bátkai, Eszter Sikolya (2012)

Open Mathematics

We consider numerical approximation to the solution of non-autonomous evolution equations. The order of convergence of the simplest possible Magnus method is investigated.

Currently displaying 241 – 260 of 543