Displaying 41 – 60 of 105

Showing per page

High order semi-lagrangian particle methods for transport equations: numerical analysis and implementation issues

G.-H. Cottet, J.-M. Etancelin, F. Perignon, C. Picard (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is devoted to the definition, analysis and implementation of semi-Lagrangian methods as they result from particle methods combined with remeshing. We give a complete consistency analysis of these methods, based on the regularity and momentum properties of the remeshing kernels, and a stability analysis of a large class of second and fourth order methods. This analysis is supplemented by numerical illustrations. We also describe a general approach to implement these methods in the context...

High order transmission conditions for thin conductive sheets in magneto-quasistatics

Kersten Schmidt, Sébastien Tordeux (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose transmission conditions of order 1, 2 and 3 approximating the shielding behaviour of thin conducting curved sheets for the magneto-quasistatic eddy current model in 2D. This model reduction applies to sheets whose thicknesses ε are at the order of the skin depth or essentially smaller. The sheet has itself not to be resolved, only its midline is represented by an interface. The computation is directly in one step with almost no additional cost. We prove the well-posedness w.r.t. to...

High order transmission conditions for thin conductive sheets in magneto-quasistatics

Kersten Schmidt, Sébastien Tordeux (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose transmission conditions of order 1, 2 and 3 approximating the shielding behaviour of thin conducting curved sheets for the magneto-quasistatic eddy current model in 2D. This model reduction applies to sheets whose thicknesses ε are at the order of the skin depth or essentially smaller. The sheet has itself not to be resolved, only its midline is represented by an interface. The computation is directly in one step with almost no additional cost. We prove the well-posedness w.r.t. to...

Higher order finite element approximation of a quasilinear elliptic boundary value problem of a non-monotone type

Liping Liu, Michal Křížek, Pekka Neittaanmäki (1996)

Applications of Mathematics

A nonlinear elliptic partial differential equation with homogeneous Dirichlet boundary conditions is examined. The problem describes for instance a stationary heat conduction in nonlinear inhomogeneous and anisotropic media. For finite elements of degree k 1 we prove the optimal rates of convergence 𝒪 ( h k ) in the H 1 -norm and 𝒪 ( h k + 1 ) in the L 2 -norm provided the true solution is sufficiently smooth. Considerations are restricted to domains with polyhedral boundaries. Numerical integration is not taken into account....

Highly anisotropic nonlinear temperature balance equation and its numerical solution using asymptotic-preserving schemes of second order in time

Alexei Lozinski, Jacek Narski, Claudia Negulescu (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper deals with the numerical study of a nonlinear, strongly anisotropic heat equation. The use of standard schemes in this situation leads to poor results, due to the high anisotropy. An Asymptotic-Preserving method is introduced in this paper, which is second-order accurate in both, temporal and spacial variables. The discretization in time is done using an L-stable Runge−Kutta scheme. The convergence of the method is shown to be independent of the anisotropy parameter , and this for fixed...

Currently displaying 41 – 60 of 105