Displaying 41 – 60 of 67

Showing per page

On surrogate learning for linear stability assessment of Navier-Stokes equations with stochastic viscosity

Bedřich Sousedík, Howard C. Elman, Kookjin Lee, Randy Price (2022)

Applications of Mathematics

We study linear stability of solutions to the Navier-Stokes equations with stochastic viscosity. Specifically, we assume that the viscosity is given in the form of a stochastic expansion. Stability analysis requires a solution of the steady-state Navier-Stokes equation and then leads to a generalized eigenvalue problem, from which we wish to characterize the real part of the rightmost eigenvalue. While this can be achieved by Monte Carlo simulation, due to its computational cost we study three surrogates...

On the convergence of generalized polynomial chaos expansions

Oliver G. Ernst, Antje Mugler, Hans-Jörg Starkloff, Elisabeth Ullmann (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A number of approaches for discretizing partial differential equations with random data are based on generalized polynomial chaos expansions of random variables. These constitute generalizations of the polynomial chaos expansions introduced by Norbert Wiener to expansions in polynomials orthogonal with respect to non-Gaussian probability measures. We present conditions on such measures which imply mean-square convergence of generalized polynomial chaos expansions to the correct limit and complement...

On the convergence of generalized polynomial chaos expansions

Oliver G. Ernst, Antje Mugler, Hans-Jörg Starkloff, Elisabeth Ullmann (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

A number of approaches for discretizing partial differential equations with random data are based on generalized polynomial chaos expansions of random variables. These constitute generalizations of the polynomial chaos expansions introduced by Norbert Wiener to expansions in polynomials orthogonal with respect to non-Gaussian probability measures. We present conditions on such measures which imply mean-square convergence of generalized polynomial...

On the convergence of the stochastic Galerkin method for random elliptic partial differential equations

Antje Mugler, Hans-Jörg Starkloff (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article we consider elliptic partial differential equations with random coefficients and/or random forcing terms. In the current treatment of such problems by stochastic Galerkin methods it is standard to assume that the random diffusion coefficient is bounded by positive deterministic constants or modeled as lognormal random field. In contrast, we make the significantly weaker assumption that the non-negative random coefficients can be bounded strictly away from zero and infinity by random...

Parametric inference for mixed models defined by stochastic differential equations

Sophie Donnet, Adeline Samson (2008)

ESAIM: Probability and Statistics

Non-linear mixed models defined by stochastic differential equations (SDEs) are considered: the parameters of the diffusion process are random variables and vary among the individuals. A maximum likelihood estimation method based on the Stochastic Approximation EM algorithm, is proposed. This estimation method uses the Euler-Maruyama approximation of the diffusion, achieved using latent auxiliary data introduced to complete the diffusion process between each pair of measurement instants. A tuned...

Probabilistic methods for semilinear partial differential equations. Applications to finance

Dan Crisan, Konstantinos Manolarakis (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

With the pioneering work of [Pardoux and Peng, Syst. Contr. Lett.14 (1990) 55–61; Pardoux and Peng, Lecture Notes in Control and Information Sciences176 (1992) 200–217]. We have at our disposal stochastic processes which solve the so-called backward stochastic differential equations. These processes provide us with a Feynman-Kac representation for the solutions of a class of nonlinear partial differential equations (PDEs) which appear in many applications in the field of Mathematical Finance....

Simulation and approximation of Lévy-driven stochastic differential equations

Nicolas Fournier (2011)

ESAIM: Probability and Statistics

We consider the approximate Euler scheme for Lévy-driven stochastic differential equations. We study the rate of convergence in law of the paths. We show that when approximating the small jumps by Gaussian variables, the convergence is much faster than when simply neglecting them. For example, when the Lévy measure of the driving process behaves like |z|−1−αdz near 0, for some α ∈ (1,2), we obtain an error of order 1/√n with a computational cost of order nα. For a similar error when neglecting the...

Simulation and approximation of Lévy-driven stochastic differential equations

Nicolas Fournier (2012)

ESAIM: Probability and Statistics

We consider the approximate Euler scheme for Lévy-driven stochastic differential equations. We study the rate of convergence in law of the paths. We show that when approximating the small jumps by Gaussian variables, the convergence is much faster than when simply neglecting them. For example, when the Lévy measure of the driving process behaves like |z|−1−αdz near 0, for some α∈ (1,2), we obtain an error of order 1/√n with a computational cost of order nα. For a similar error when neglecting the...

Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs

Abdellah Chkifa, Albert Cohen, Ronald DeVore, Christoph Schwab (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The numerical approximation of parametric partial differential equations is a computational challenge, in particular when the number of involved parameter is large. This paper considers a model class of second order, linear, parametric, elliptic PDEs on a bounded domain D with diffusion coefficients depending on the parameters in an affine manner. For such models, it was shown in [9, 10] that under very weak assumptions on the diffusion coefficients, the entire family of solutions to such equations...

Sparse finite element methods for operator equations with stochastic data

Tobias von Petersdorff, Christoph Schwab (2006)

Applications of Mathematics

Let A V V ' be a strongly elliptic operator on a d -dimensional manifold D (polyhedra or boundaries of polyhedra are also allowed). An operator equation A u = f with stochastic data f is considered. The goal of the computation is the mean field and higher moments 1 u V , 2 u V V , ... , k u V V of the solution. We discretize the mean field problem using a FEM with hierarchical basis and N degrees of freedom. We present a Monte-Carlo algorithm and a deterministic algorithm for the approximation of the moment k u for k 1 . The key tool...

Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains

Petru A. Cioica, Stephan Dahlke, Stefan Kinzel, Felix Lindner, Thorsten Raasch, Klaus Ritter, René L. Schilling (2011)

Studia Mathematica

We use the scale of Besov spaces B τ , τ α ( ) , 1/τ = α/d + 1/p, α > 0, p fixed, to study the spatial regularity of solutions of linear parabolic stochastic partial differential equations on bounded Lipschitz domains ⊂ ℝ. The Besov smoothness determines the order of convergence that can be achieved by nonlinear approximation schemes. The proofs are based on a combination of weighted Sobolev estimates and characterizations of Besov spaces by wavelet expansions.

Sur quelques algorithmes récursifs pour les probabilités numériques

Gilles Pagès (2001)

ESAIM: Probability and Statistics

The aim of this paper is to take an in-depth look at the long time behaviour of some continuous time markovian dynamical systems and at its numerical analysis. We first propose a short overview of the main ergodicity properties of time continuous homogeneous Markov processes (stability, positive recurrence). The basic tool is a Lyapunov function. Then, we investigate if these properties still hold for the time discretization of these processes, either with constant or decreasing step (ODE method...

Currently displaying 41 – 60 of 67