Displaying 61 – 80 of 179

Showing per page

Estimation of anisotropic gaussian fields through Radon transform

Hermine Biermé, Frédéric Richard (2008)

ESAIM: Probability and Statistics

We estimate the anisotropic index of an anisotropic fractional brownian field. For all directions, we give a convergent estimator of the value of the anisotropic index in this direction, based on generalized quadratic variations. We also prove a central limit theorem. First we present a result of identification that relies on the asymptotic behavior of the spectral density of a process. Then, we define Radon transforms of the anisotropic fractional brownian field and prove that these processes admit...

Estimation of anisotropic Gaussian fields through Radon transform

Hermine Biermé, Frédéric Richard (2007)

ESAIM: Probability and Statistics

We estimate the anisotropic index of an anisotropic fractional Brownian field. For all directions, we give a convergent estimator of the value of the anisotropic index in this direction, based on generalized quadratic variations. We also prove a central limit theorem. First we present a result of identification that relies on the asymptotic behavior of the spectral density of a process. Then, we define Radon transforms of the anisotropic fractional Brownian field and prove that these processes...

Estimation of dispersion in nonlinear regression models with constraints

Lubomír Kubáček, Eva Tesaříková (2004)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Dispersion of measurement results is an important parameter that enables us not only to characterize not only accuracy of measurement but enables us also to construct confidence regions and to test statistical hypotheses. In nonlinear regression model the estimator of dispersion is influenced by a curvature of the manifold of the mean value of the observation vector. The aim of the paper is to find the way how to determine a tolerable level of this curvature.

Estimators of the asymptotic variance of stationary point processes - a comparison

Michaela Prokešová (2011)

Kybernetika

We investigate estimators of the asymptotic variance σ 2 of a d –dimensional stationary point process Ψ which can be observed in convex and compact sampling window W n = n W . Asymptotic variance of Ψ is defined by the asymptotic relation V a r ( Ψ ( W n ) ) σ 2 | W n | (as n ) and its existence is guaranteed whenever the corresponding reduced covariance measure γ red ( 2 ) ( · ) has finite total variation. The three estimators discussed in the paper are the kernel estimator, the estimator based on the second order intesity of the point process and the...

Exponential inequalities for VLMC empirical trees

Antonio Galves, Véronique Maume-Deschamps, Bernard Schmitt (2008)

ESAIM: Probability and Statistics

A seminal paper by Rissanen, published in 1983, introduced the class of Variable Length Markov Chains and the algorithm Context which estimates the probabilistic tree generating the chain. Even if the subject was recently considered in several papers, the central question of the rate of convergence of the algorithm remained open. This is the question we address here. We provide an exponential upper bound for the probability of incorrect estimation of the probabilistic tree, as a function...

Exponential smoothing and resampling techniques in time series prediction

Maria Manuela Neves, Clara Cordeiro (2010)

Discussiones Mathematicae Probability and Statistics

Time series analysis deals with records that are collected over time. The objectives of time series analysis depend on the applications, but one of the main goals is to predict future values of the series. These values depend, usually in a stochastic manner, on the observations available at present. Such dependence has to be considered when predicting the future from its past, taking into account trend, seasonality and other features of the data. Some of the most successful forecasting methods are...

Extremal behaviour of stationary processes: the calibration technique in the extremal index estimation

D. Prata Gomes, Maria Manuela Neves (2010)

Discussiones Mathematicae Probability and Statistics

Classical extreme value methods were derived when the underlying process is assumed to be a sequence of independent random variables. However when observations are taken along the time and/or the space the independence is an unrealistic assumption. A parameter that arises in this situation, characterizing the degree of local dependence in the extremes of a stationary series, is the extremal index, θ. In several areas such as hydrology, telecommunications, finance and environment, for example, the...

Filtering of signals transmitted in multichannel from Chandrasekhar and Riccati recursions.

S. Nakamori, A. Hermoso, J. Jiménez, J. Linares (2005)

Extracta Mathematicae

In this paper two recursive algorithms are proposed and compared as a solution of the least mean-squared error linear filtering problem of a wide-sense stationary scalar signal from uncertain observations perturbed by white and coloured additive noises. Considering that the state-space model of the signal is not available and that the variables modelling the uncertainty are not independent, the proposed algorithms are derived by using covariance information. The difference between both algorithms...

Fuzzy clustering of spatial binary data

Mô Dang, Gérard Govaert (1998)

Kybernetika

An iterative fuzzy clustering method is proposed to partition a set of multivariate binary observation vectors located at neighboring geographic sites. The method described here applies in a binary setup a recently proposed algorithm, called Neighborhood EM, which seeks a partition that is both well clustered in the feature space and spatially regular [AmbroiseNEM1996]. This approach is derived from the EM algorithm applied to mixture models [Dempster1977], viewed as an alternate optimization method...

Generación de un sistema bivariante con marginales dadas y estimación de su parámetro de dependencia.

Jordi Ocaña, Carles Maria Cuadras (1987)

Qüestiió

En este trabajo se proponen dos posibles estimadores del parámetro de dependencia de una familia de distribuciones bivariantes con marginales dadas y se realiza un estudio de Monte Carlo de sus respectivos sesgo y eficiencia, a fin de determinar cuál de ambos estimadores es preferible. También se propone y se estudia, de forma similar, una posible versión "Jackknife" del mejor de los dos estimadores anteriores. En este estudio se emplean técnicas de reducción de la varianza. Para poder realizar...

Goodness-of-fit tests for parametric regression models based on empirical characteristic functions

Marie Hušková, Simon G. Meintanis (2009)

Kybernetika

Test procedures are constructed for testing the goodness-of-fit in parametric regression models. The test statistic is in the form of an L2 distance between the empirical characteristic function of the residuals in a parametric regression fit and the corresponding empirical characteristic function of the residuals in a non-parametric regression fit. The asymptotic null distribution as well as the behavior of the test statistic under contiguous alternatives is investigated. Theoretical results are...

Holt-Winters method with general seasonality

Tomáš Hanzák (2012)

Kybernetika

The paper suggests a generalization of widely used Holt-Winters smoothing and forecasting method for seasonal time series. The general concept of seasonality modeling is introduced both for the additive and multiplicative case. Several special cases are discussed, including a linear interpolation of seasonal indices and a usage of trigonometric functions. Both methods are fully applicable for time series with irregularly observed data (just the special case of missing observations was covered up...

How many bins should be put in a regular histogram

Lucien Birgé, Yves Rozenholc (2006)

ESAIM: Probability and Statistics

Given an n-sample from some unknown density f on [0,1], it is easy to construct an histogram of the data based on some given partition of [0,1], but not so much is known about an optimal choice of the partition, especially when the data set is not large, even if one restricts to partitions into intervals of equal length. Existing methods are either rules of thumbs or based on asymptotic considerations and often involve some smoothness properties of f. Our purpose in this paper is to give an automatic,...

How the result of graph clustering methods depends on the construction of the graph

Markus Maier, Ulrike von Luxburg, Matthias Hein (2013)

ESAIM: Probability and Statistics

We study the scenario of graph-based clustering algorithms such as spectral clustering. Given a set of data points, one first has to construct a graph on the data points and then apply a graph clustering algorithm to find a suitable partition of the graph. Our main question is if and how the construction of the graph (choice of the graph, choice of parameters, choice of weights) influences the outcome of the final clustering result. To this end we study the convergence of cluster quality measures...

Improving feature selection process resistance to failures caused by curse-of-dimensionality effects

Petr Somol, Jiří Grim, Jana Novovičová, Pavel Pudil (2011)

Kybernetika

The purpose of feature selection in machine learning is at least two-fold - saving measurement acquisition costs and reducing the negative effects of the curse of dimensionality with the aim to improve the accuracy of the models and the classification rate of classifiers with respect to previously unknown data. Yet it has been shown recently that the process of feature selection itself can be negatively affected by the very same curse of dimensionality - feature selection methods may easily over-fit...

Currently displaying 61 – 80 of 179