Displaying 141 – 160 of 226

Showing per page

On the computation of the GCD of 2-D polynomials

Panagiotis Tzekis, Nicholas Karampetakis, Haralambos Terzidis (2007)

International Journal of Applied Mathematics and Computer Science

The main contribution of this work is to provide an algorithm for the computation of the GCD of 2-D polynomials, based on DFT techniques. The whole theory is implemented via illustrative examples.

Optimal-order quadratic interpolation in vertices of unstructured triangulations

Josef Dalík (2008)

Applications of Mathematics

We study the problem of Lagrange interpolation of functions of two variables by quadratic polynomials under the condition that nodes of interpolation are vertices of a triangulation. For an extensive class of triangulations we prove that every inner vertex belongs to a local six-tuple of vertices which, used as nodes of interpolation, have the following property: For every smooth function there exists a unique quadratic Lagrange interpolation polynomial and the related local interpolation error...

Quadratic splines smoothing the first derivatives

Jiří Kobza (1992)

Applications of Mathematics

The extremal property of quadratic splines interpolating the first derivatives is proved. Quadratic spline smoothing the given values of the first derivative, depending on the knot weights w i and smoothing parameter α , is then studied. The algorithm for computing appropriate parameters of such splines is given and the dependence on the smoothing parameter α is mentioned.

Currently displaying 141 – 160 of 226