Eine neue Funktionalgleichung zur Bestimmung elliptischer Integrale erster Gattung und ihrer Umkehrungen.
In an error estimation of finite element solutions to the Poisson equation, we usually impose the shape regularity assumption on the meshes to be used. In this paper, we show that even if the shape regularity condition is violated, the standard error estimation can be obtained if ``bad'' elements that violate the shape regularity or maximum angle condition are covered virtually by simplices that satisfy the minimum angle condition. A numerical experiment illustrates the theoretical result.
To reconstruct an even Borel measure on the unit sphere from finitely many values of its sine transform a least square estimator is proposed. Applying results by Gardner, Kiderlen and Milanfar we estimate its rate of convergence and prove strong consistency. We close this paper by giving an estimator for the directional distribution of certain three-dimensional stationary Poisson processes of convex cylinders which have applications in material science.