The e-Algorithm and Multivariate Pade-Approximants
In this paper we analyze the effect of introducing a numerical integration in the piecewise linear finite element approximation of the Steklov eigenvalue problem. We obtain optimal order error estimates for the eigenfunctions when this numerical integration is used and we prove that, for singular eigenfunctions, the eigenvalues obtained using this reduced integration are better approximations than those obtained using exact integration when the mesh size is small enough.
In this paper we analyze the effect of introducing a numerical integration in the piecewise linear finite element approximation of the Steklov eigenvalue problem. We obtain optimal order error estimates for the eigenfunctions when this numerical integration is used and we prove that, for singular eigenfunctions, the eigenvalues obtained using this reduced integration are better approximations than those obtained using exact integration when the mesh size is small enough.
A strictly short embedding is an embedding of a Riemannian manifold into an Euclidean space that strictly shortens distances. From such an embedding, the Nash-Kuiper process builds a sequence of maps converging toward an isometric embedding. In that paper, we describe this Nash-Kuiper process in the case of curves. We state an explicit formula for the limit normal map and perform its Fourier series expansion. We then adress the question of Holder regularity of the limit map.