Résolution paramétrée de familles de systèmes linéaires
An abstract framework for constructing stable decompositions of the spaces corresponding to general symmetric positive definite problems into “local” subspaces and a global “coarse” space is developed. Particular applications of this abstract framework include practically important problems in porous media applications such as: the scalar elliptic (pressure) equation and the stream function formulation of its mixed form, Stokes’ and Brinkman’s equations. The constant in the corresponding abstract...
An abstract framework for constructing stable decompositions of the spaces corresponding to general symmetric positive definite problems into “local” subspaces and a global “coarse” space is developed. Particular applications of this abstract framework include practically important problems in porous media applications such as: the scalar elliptic (pressure) equation and the stream function formulation of its mixed form, Stokes’ and Brinkman’s equations....
We discuss a family of discontinuous Petrov–Galerkin (DPG) schemes for quite general partial differential operators. The starting point of our analysis is the DPG method introduced by [Demkowicz et al., SIAM J. Numer. Anal. 49 (2011) 1788–1809; Zitelli et al., J. Comput. Phys. 230 (2011) 2406–2432]. This discretization results in a sparse positive definite linear algebraic system which can be obtained from a saddle point problem by an element-wise Schur complement reduction applied to the test space....
New positive definite preconditioners for the matrix free truncated Newton method are given. Corresponding algorithms are described in detail. Results of numerical experiments that confirm the efficiency and robustness of the preconditioned truncated Newton method are reported.
While a large amount of papers are dealing with robust multilevel methods and algorithms for linear FEM elliptic systems, the related higher order FEM problems are much less studied. Moreover, we know that the standard hierarchical basis two-level splittings deteriorate for strongly anisotropic problems. A first robust multilevel preconditioner for higher order FEM systems obtained after discretizations of elliptic problems with an anisotropic diffusion tensor is presented in this paper. We study...
The efficient evaluation of a discrete convolution is usually carried out as a repated evaluation of a discrete convolution of a special type with the help of the fast Fourier transform. The paper is concerned with the analysis of the roundoff errors in the fast computation of this convolution. To obtain a comparison, the roundoff errors in the usual (direct) computation of this convolution are also considered. A stochastic model of the propagation of roundoff errors. is employed. The theoretical...
The aim of this contribution is to propose and analyze some computational means to approximate solving mathematical problems appearing in some recent studies devoted to biological and chemical networks.