Displaying 321 – 340 of 402

Showing per page

Reconstruction of map projection, its inverse and re-projection

Tomáš Bayer, Milada Kočandrlová (2018)

Applications of Mathematics

This paper focuses on the automatic recognition of map projection, its inverse and re-projection. Our analysis leads to the unconstrained optimization solved by the hybrid BFGS nonlinear least squares technique. The objective function is represented by the squared sum of the residuals. For the map re-projection the partial differential equations of the inverse transformation are derived. They can be applied to any map projection. Illustrative examples of the stereographic and globular Nicolosi projections...

Regulatory network of drug-induced enzyme production: parameter estimation based on the periodic dosing response measurement

Papáček, Štěpán, Lynnyk, Volodymyr, Rehák, Branislav (2021)

Programs and Algorithms of Numerical Mathematics

The common goal of systems pharmacology, i.e. systems biology applied to the field of pharmacology, is to rely less on trial and error in designing an input-output systems, e.g. therapeutic schedules. In this paper we present, on the paradigmatic example of a regulatory network of drug-induced enzyme production, the further development of the study published by Duintjer Tebbens et al. (2019) in the Applications of Mathematics. Here, the key feature is that the nonlinear model in form of an ODE system...

Semi–smooth Newton methods for variational inequalities of the first kind

Kazufumi Ito, Karl Kunisch (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Semi–smooth Newton methods are analyzed for a class of variational inequalities in infinite dimensions. It is shown that they are equivalent to certain active set strategies. Global and local super-linear convergence are proved. To overcome the phenomenon of finite speed of propagation of discretized problems a penalty version is used as the basis for a continuation procedure to speed up convergence. The choice of the penalty parameter can be made on the basis of an L estimate for the penalized...

Semi–Smooth Newton Methods for Variational Inequalities of the First Kind

Kazufumi Ito, Karl Kunisch (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Semi–smooth Newton methods are analyzed for a class of variational inequalities in infinite dimensions. It is shown that they are equivalent to certain active set strategies. Global and local super-linear convergence are proved. To overcome the phenomenon of finite speed of propagation of discretized problems a penalty version is used as the basis for a continuation procedure to speed up convergence. The choice of the penalty parameter can be made on the basis of an L∞ estimate for the penalized...

Shape optimization by means of the penalty method with extrapolation

Ivan Hlaváček (1994)

Applications of Mathematics

A model shape optimal design in 2 is solved by means of the penalty method with extrapolation, which enables to obtain high order approximations of both the state function and the boundary flux, thus offering a reliable gradient for the sensitivity analysis. Convergence of the proposed method is proved for certain subsequences of approximate solutions.

Shape optimization of an elasto-perfectly plastic body

Ivan Hlaváček (1987)

Aplikace matematiky

Within the range of Prandtl-Reuss model of elasto-plasticity the following optimal design problem is solved. Given body forces and surface tractions, a part of the boundary, where the (two-dimensional) body is fixed, is to be found, so as to minimize an integral of the squared yield function. The state problem is formulated in terms of stresses by means of a time-dependent variational inequality. For approximate solutions piecewise linear approximations of the unknown boundary, piecewise constant...

Shape optimization of an elasto-plastic body for the model with strain- hardening

Vladislav Pištora (1990)

Aplikace matematiky

The state problem of elasto-plasticity (for the model with strain-hardening) is formulated in terms of stresses and hardening parameters by means of a time-dependent variational inequality. The optimal design problem is to find the shape of a part of the boundary such that a given cost functional is minimized. For the approximate solutions piecewise linear approximations of the unknown boundary, piecewise constant triangular elements for the stress and the hardening parameter, and backward differences...

Shape optimization of elasto-plastic axisymmetric bodies

Ivan Hlaváček (1991)

Applications of Mathematics

A minimization of a cost functional with respect to a part of a boundary is considered for an elasto-plastic axisymmetric body obeying Hencky's law. The principle of Haar-Kármán and piecewise linear stress approximations are used to solve the state problem. A convergence result and the existence of an optimal boundary is proved.

Shape optimization of elastoplastic bodies obeying Hencky's law

Ivan Hlaváček (1986)

Aplikace matematiky

A minimization of a cost functional with respect to a part of the boundary, where the body is fixed, is considered. The criterion is defined by an integral of a yield function. The principle of Haar-Kármán and piecewise constant stress approximations are used to solve the state problem. A convergence result and the existence of an optimal boundary is proved.

Sharp upper global a posteriori error estimates for nonlinear elliptic variational problems

János Karátson, Sergey Korotov (2009)

Applications of Mathematics

The paper is devoted to the problem of verification of accuracy of approximate solutions obtained in computer simulations. This problem is strongly related to a posteriori error estimates, giving computable bounds for computational errors and detecting zones in the solution domain where such errors are too large and certain mesh refinements should be performed. A mathematical model embracing nonlinear elliptic variational problems is considered in this work. Based on functional type estimates developed...

Solution for a classical problem in the calculus of variations via rationalized Haar functions

Mohsen Razzaghi, Yadollah Ordokhani (2001)

Kybernetika

A numerical technique for solving the classical brachistochrone problem in the calculus of variations is presented. The brachistochrone problem is first formulated as a nonlinear optimal control problem. Application of this method results in the transformation of differential and integral expressions into some algebraic equations to which Newton-type methods can be applied. The method is general, and yields accurate results.

Solution of 3D contact shape optimization problems with Coulomb friction based on TFETI

Alexandros Markopoulos, Petr Beremlijski, Oldřich Vlach, Marie Sadowská (2023)

Applications of Mathematics

The present paper deals with the numerical solution of 3D shape optimization problems in frictional contact mechanics. Mathematical modelling of the Coulomb friction problem leads to an implicit variational inequality which can be written as a fixed point problem. Furthermore, it is known that the discretized problem is uniquely solvable for small coefficients of friction. Since the considered problem is nonsmooth, we exploit the generalized Mordukhovich’s differential calculus to compute the needed...

Solution of degenerate parabolic variational inequalities with convection

Jozef Kacur, Roger Van Keer (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Degenerate parabolic variational inequalities with convection are solved by means of a combined relaxation method and method of characteristics. The mathematical problem is motivated by Richard’s equation, modelling the unsaturated – saturated flow in porous media. By means of the relaxation method we control the degeneracy. The dominance of the convection is controlled by the method of characteristics.

Solution of degenerate parabolic variational inequalities with convection

Jozef Kacur, Roger Van Keer (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Degenerate parabolic variational inequalities with convection are solved by means of a combined relaxation method and method of characteristics. The mathematical problem is motivated by Richard's equation, modelling the unsaturated – saturated flow in porous media. By means of the relaxation method we control the degeneracy. The dominance of the convection is controlled by the method of characteristics.

Solvability and numerical algorithms for a class of variational data assimilation problems

Guri Marchuk, Victor Shutyaev (2002)

ESAIM: Control, Optimisation and Calculus of Variations

A class of variational data assimilation problems on reconstructing the initial-value functions is considered for the models governed by quasilinear evolution equations. The optimality system is reduced to the equation for the control function. The properties of the control equation are studied and the solvability theorems are proved for linear and quasilinear data assimilation problems. The iterative algorithms for solving the problem are formulated and justified.

Solvability and numerical algorithms for a class of variational data assimilation problems

Guri Marchuk, Victor Shutyaev (2010)

ESAIM: Control, Optimisation and Calculus of Variations

A class of variational data assimilation problems on reconstructing the initial-value functions is considered for the models governed by quasilinear evolution equations. The optimality system is reduced to the equation for the control function. The properties of the control equation are studied and the solvability theorems are proved for linear and quasilinear data assimilation problems. The iterative algorithms for solving the problem are formulated and justified.

Solving variational inclusions by a multipoint iteration method under center-Hölder continuity conditions

Catherine Cabuzel, Alain Pietrus (2007)

Applicationes Mathematicae

We prove the existence of a sequence ( x k ) satisfying 0 f ( x k ) + i = 1 M a i f ( x k + β i ( x k + 1 - x k ) ) ( x k + 1 - x k ) + F ( x k + 1 ) , where f is a function whose second order Fréchet derivative ∇²f satifies a center-Hölder condition and F is a set-valued map from a Banach space X to the subsets of a Banach space Y. We show that the convergence of this method is superquadratic.

Currently displaying 321 – 340 of 402