Displaying 61 – 80 of 402

Showing per page

An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints

Michael Hintermüller, Ronald H.W. Hoppe, Yuri Iliash, Michael Kieweg (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We present an a posteriori error analysis of adaptive finite element approximations of distributed control problems for second order elliptic boundary value problems under bound constraints on the control. The error analysis is based on a residual-type a posteriori error estimator that consists of edge and element residuals. Since we do not assume any regularity of the data of the problem, the error analysis further invokes data oscillations. We prove reliability and efficiency of the error estimator...

An active set strategy based on the augmented Lagrangian formulation for image restoration

Kazufumi Ito, Karl Kunisch (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Lagrangian and augmented Lagrangian methods for nondifferentiable optimization problems that arise from the total bounded variation formulation of image restoration problems are analyzed. Conditional convergence of the Uzawa algorithm and unconditional convergence of the first order augmented Lagrangian schemes are discussed. A Newton type method based on an active set strategy defined by means of the dual variables is developed and analyzed. Numerical examples for blocky signals and images perturbed by...

An adaptive finite element method for solving a double well problem describing crystalline microstructure

Andreas Prohl (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The minimization of nonconvex functionals naturally arises in materials sciences where deformation gradients in certain alloys exhibit microstructures. For example, minimizing sequences of the nonconvex Ericksen-James energy can be associated with deformations in martensitic materials that are observed in experiments[2,3]. — From the numerical point of view, classical conforming and nonconforming finite element discretizations have been observed to give minimizers with their quality being highly dependent...

An existence theorem for extended mildly nonlinear complementarity problem in semi-inner product spaces

M. S. Khan (1995)

Commentationes Mathematicae Universitatis Carolinae

We prove a result for the existence and uniqueness of the solution for a class of mildly nonlinear complementarity problem in a uniformly convex and strongly smooth Banach space equipped with a semi-inner product. We also get an extension of a nonlinear complementarity problem over an infinite dimensional space. Our last results deal with the existence of a solution of mildly nonlinear complementarity problem in a reflexive Banach space.

An hp-Discontinuous Galerkin Method for the Optimal Control Problem of Laser Surface Hardening of Steel

Gupta Nupur, Nataraj Neela (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we discuss an hp-discontinuous Galerkin finite element method (hp-DGFEM) for the laser surface hardening of steel, which is a constrained optimal control problem governed by a system of differential equations, consisting of an ordinary differential equation for austenite formation and a semi-linear parabolic differential equation for temperature evolution. The space discretization of the state variable is done using an hp-DGFEM, time and control discretizations are based on a discontinuous Galerkin...

An hp-Discontinuous Galerkin Method for the Optimal Control Problem of Laser Surface Hardening of Steel

Gupta Nupur, Nataraj Neela (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we discuss an hp-discontinuous Galerkin finite element method (hp-DGFEM) for the laser surface hardening of steel, which is a constrained optimal control problem governed by a system of differential equations, consisting of an ordinary differential equation for austenite formation and a semi-linear parabolic differential equation for temperature evolution. The space discretization of the state variable is done using an hp-DGFEM, time and control discretizations are based on a discontinuous Galerkin...

An optimum design problem in magnetostatics

Antoine Henrot, Grégory Villemin (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we are interested in finding the optimal shape of a magnet. The criterion to maximize is the jump of the electromagnetic field between two different configurations. We prove existence of an optimal shape into a natural class of domains. We introduce a quasi-Newton type algorithm which moves the boundary. This method is very efficient to improve an initial shape. We give some numerical results.

An Optimum Design Problem in Magnetostatics

Antoine Henrot, Grégory Villemin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we are interested in finding the optimal shape of a magnet. The criterion to maximize is the jump of the electromagnetic field between two different configurations. We prove existence of an optimal shape into a natural class of domains. We introduce a quasi-Newton type algorithm which moves the boundary. This method is very efficient to improve an initial shape. We give some numerical results.

Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics

Xavier Blanc, Claude Le Bris, Frédéric Legoll (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In order to describe a solid which deforms smoothly in some region, but non smoothly in some other region, many multiscale methods have recently been proposed. They aim at coupling an atomistic model (discrete mechanics) with a macroscopic model (continuum mechanics). We provide here a theoretical ground for such a coupling in a one-dimensional setting. We briefly study the general case of a convex energy, and next concentrate on a specific example of a nonconvex energy, the Lennard-Jones case....

Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics

Xavier Blanc, Claude Le Bris, Frédéric Legoll (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In order to describe a solid which deforms smoothly in some region, but non smoothly in some other region, many multiscale methods have recently been proposed. They aim at coupling an atomistic model (discrete mechanics) with a macroscopic model (continuum mechanics). We provide here a theoretical ground for such a coupling in a one-dimensional setting. We briefly study the general case of a convex energy, and next concentrate on a specific example of a nonconvex energy, the Lennard-Jones case....

Analysis of approximate solutions of coupled dynamical thermoelasticity and related problems

Jozef Kačur, Alexander Ženíšek (1986)

Aplikace matematiky

The authors study problems of existence and uniqueness of solutions of various variational formulations of the coupled problem of dynamical thermoelasticity and of the convergence of approximate solutions of these problems. First, the semidiscrete approximate solutions is defined, which is obtained by time discretization of the original variational problem by Euler’s backward formula. Under certain smoothness assumptions on the date authors prove existence and uniqueness of the solution and establish...

Currently displaying 61 – 80 of 402