Stability of Ritz Procedure for Nonlinear Two-Point Boundary Value Problem.
Strong convergence estimates for pseudospectral methods applied to ordinary boundary value problems are derived. The results are also used for a convergence analysis of the Schwarz algorithm (a special domain decomposition technique). Different types of nodes (Chebyshev, Legendre nodes) are examined and compared.
The superconvergence property of a certain external method for solving two point boundary value problems is established. In the case when piecewise polynomial spaces are applied, it is proved that the convergence rate of the approximate solution at the knot points can exceed the global one.
A numerical method for the solution of a second order boundary value problem for differential equation with state dependent deviating argument is studied. Second-order convergence is established and a theorem about the asymptotic expansion of global discretization error is given. This theorem makes it possible to improve the accuracy of the numerical solution by using Richardson extrapolation which results in a convergent method of order three. This is in contrast to boundary value problems for...