Page 1

Displaying 1 – 13 of 13

Showing per page

A Finite Element Model Based on Discontinuous Galerkin Methods on Moving Grids for Vertebrate Limb Pattern Formation

J. Zhu, Y.-T. Zhang, S. A. Newman, M. S. Alber (2009)

Mathematical Modelling of Natural Phenomena

Skeletal patterning in the vertebrate limb, i.e., the spatiotemporal regulation of cartilage differentiation (chondrogenesis) during embryogenesis and regeneration, is one of the best studied examples of a multicellular developmental process. Recently [Alber et al., The morphostatic limit for a model of skeletal pattern formation in the vertebrate limb, Bulletin of Mathematical Biology, 2008, v70, pp. 460-483], a simplified two-equation reaction-diffusion system was developed to describe the interaction...

A fixed point method to compute solvents of matrix polynomials

Fernando Marcos, Edgar Pereira (2010)

Mathematica Bohemica

Matrix polynomials play an important role in the theory of matrix differential equations. We develop a fixed point method to compute solutions of matrix polynomials equations, where the matricial elements of the matrix polynomial are considered separately as complex polynomials. Numerical examples illustrate the method presented.

A method for determining constants in the linear combination of exponentials

Jiří Cerha (1996)

Mathematica Bohemica

Shifting a numerically given function b 1 exp a 1 t + + b n exp a n t we obtain a fundamental matrix of the linear differential system y ˙ = A y with a constant matrix A . Using the fundamental matrix we calculate A , calculating the eigenvalues of A we obtain a 1 , , a n and using the least square method we determine b 1 , , b n .

A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems

Josef Dalík (1991)

Applications of Mathematics

A general construction of test functions in the Petrov-Galerkin method is described. Using this construction; algorithms for an approximate solution of the Dirichlet problem for the differential equation - ϵ u n + p u ' + q u = f are presented and analyzed theoretically. The positive number ϵ is supposed to be much less than the discretization step and the values of p , q . An algorithm for the corresponding two-dimensional problem is also suggested and results of numerical tests are introduced.

Adaptive finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation

Zhi-cai Ma, Jie Wu, Yong-zheng Sun (2017)

Kybernetika

This paper is further concerned with the finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation via an adaptive controller. First of all, we introduce the definition of finite-time generalized outer synchronization between two different dimensional chaotic systems. Then, employing the finite-time stability theory, we design an adaptive feedback controller to realize the generalized outer synchronization between two different dimensional...

An algebraic theory of order

Philippe Chartier, Ander Murua (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we present an abstract framework which describes algebraically the derivation of order conditions independently of the nature of differential equations considered or the type of integrators used to solve them. Our structure includes a Hopf algebra of functions, whose properties are used to answer several questions of prime interest in numerical analysis. In particular, we show that, under some mild assumptions, there exist integrators of arbitrarily high orders for arbitrary (modified)...

Currently displaying 1 – 13 of 13

Page 1