Displaying 521 – 540 of 882

Showing per page

On an interaction of two elastic bodies: analysis and algorithms

Ivona Svobodová (2012)

Applications of Mathematics

The paper deals with existence and uniqueness results and with the numerical solution of the nonsmooth variational problem describing a deflection of a thin annular plate with Neumann boundary conditions. Various types of the subsoil and the obstacle which influence the plate deformation are considered. Numerical experiments compare two different algorithms.

On consistency, stability and convergence of staggered solution procedures

Ewa Turska, Bernardo A. Schrefler (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The simultaneous and staggered procedures of solving a partitioned form of a coupled system of ordinary differential equations are presented. Formulas for errors are compared. Counter-examples for convergence with a constant number of iterations at each time step are given.

On energy conservation of the simplified Takahashi-Imada method

Ernst Hairer, Robert I. McLachlan, Robert D. Skeel (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

In long-time numerical integration of Hamiltonian systems, and especially in molecular dynamics simulation, it is important that the energy is well conserved. For symplectic integrators applied with sufficiently small step size, this is guaranteed by the existence of a modified Hamiltonian that is exactly conserved up to exponentially small terms. This article is concerned with the simplified Takahashi-Imada method, which is a modification of the Störmer-Verlet method that is as easy to implement...

On Euler methods for Caputo fractional differential equations

Petr Tomášek (2023)

Archivum Mathematicum

Numerical methods for fractional differential equations have specific properties with respect to the ones for ordinary differential equations. The paper discusses Euler methods for Caputo differential equation initial value problem. The common properties of the methods are stated and demonstrated by several numerical experiments. Python codes are available to researchers for numerical simulations.

On highly oscillatory problems arising in electronic engineering

Marissa Condon, Alfredo Deaño, Arieh Iserles (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we consider linear ordinary differential equations originating in electronic engineering, which exhibit exceedingly rapid oscillation. Moreover, the oscillation model is completely different from the familiar framework of asymptotic analysis of highly oscillatory integrals. Using a Bessel-function identity, we expand the oscillator into asymptotic series, and this allows us to extend Filon-type approach to this setting. The outcome is a time-stepping method that guarantees ...

On mesh independence and Newton-type methods

Owe Axelsson (1993)

Applications of Mathematics

Mesh-independent convergence of Newton-type methods for the solution of nonlinear partial differential equations is discussed. First, under certain local smoothness assumptions, it is shown that by properly relating the mesh parameters H and h for a coarse and a fine discretization mesh, it suffices to compute the solution of the nonlinear equation on the coarse mesh and subsequently correct it once using the linearized (Newton) equation on the fine mesh. In this way the iteration error will be...

Currently displaying 521 – 540 of 882