Displaying 541 – 560 of 882

Showing per page

On numerical integration of implicit ordinary differential equations

Zdzisław Jackiewicz, Marian Kwapisz (1981)

Aplikace matematiky

In this paper it is shown how the numerical methods for ordinary differential equations can be adapted to implicit ordinary differential equations. The resulting methods are of the same order as the corresponding methods for ordinary differential equations. The convergence theorem is proved and some numerical examples are given.

On numerical solution of multiparameter Sturm-Liouville spectral problems

T. Levitina (1994)

Banach Center Publications

The method proposed here has been devised for solution of the spectral problem for the Lamé wave equation (see [2]), but extended lately to more general problems. This method is based on the phase function concept or the Prüfer angle determined by the Prüfer transformation cotθ(x) = y'(x)/y(x), where y(x) is a solution of a second order self-adjoint o.d.e. The Prüfer angle θ(x) has some useful properties very often being referred to in theoretical research concerning both single- and multi-parameter...

On numerical solution of ordinary differential equations with discontinuities

Tadeusz Jankowski (1988)

Aplikace matematiky

The author defines the numerical solution of a first order ordinary differential equation on a bounded interval in the way covering the general form of the so called one-step methods, proves convergence of the method (without the assumption of continuity of the righthad side) and gives a sufficient condition for the order of convergence to be O ( h v ) .

On Runge-Kutta, collocation and discontinuous Galerkin methods: Mutual connections and resulting consequences to the analysis

Vlasák, Miloslav, Roskovec, Filip (2015)

Programs and Algorithms of Numerical Mathematics

Discontinuous Galerkin (DG) methods are starting to be a very popular solver for stiff ODEs. To be able to prove some more subtle properties of DG methods it can be shown that the DG method is equivalent to a specific collocation method which is in turn equivalent to an even more specific implicit Runge-Kutta (RK) method. These equivalences provide us with another interesting view on the DG method and enable us to employ well known techniques developed already for any of these methods. Our aim will...

On solving systems of differential algebraic equations

Marian Kwapisz (1992)

Applications of Mathematics

In the paper the comparison method is used to prove the convergence of the Picard iterations, the Seidel iterations, as well as some modifications of these methods applied to approximate solution of systems of differential algebraic equations. The both linear and nonlinear comparison equations are emloyed.

On Spectral Stability of Solitary Waves of Nonlinear Dirac Equation in 1D⋆⋆

G. Berkolaiko, A. Comech (2012)

Mathematical Modelling of Natural Phenomena

We study the spectral stability of solitary wave solutions to the nonlinear Dirac equation in one dimension. We focus on the Dirac equation with cubic nonlinearity, known as the Soler model in (1+1) dimensions and also as the massive Gross-Neveu model. Presented numerical computations of the spectrum of linearization at a solitary wave show that the solitary waves are spectrally stable. We corroborate our results by finding explicit expressions for...

Currently displaying 541 – 560 of 882