Displaying 801 – 820 of 882

Showing per page

The -product approach for linear ODEs: A numerical study of the scalar case

Pozza, Stefano, Van Buggenhout, Niel (2023)

Programs and Algorithms of Numerical Mathematics

Solving systems of non-autonomous ordinary differential equations (ODE) is a crucial and often challenging problem. Recently a new approach was introduced based on a generalization of the Volterra composition. In this work, we explain the main ideas at the core of this approach in the simpler setting of a scalar ODE. Understanding the scalar case is fundamental since the method can be straightforwardly extended to the more challenging problem of systems of ODEs. Numerical examples illustrate the...

The solution existence and convergence analysis for linear and nonlinear differential-operator equations in Banach spaces within the Calogero type projection-algebraic scheme of discrete approximations

Miroslaw Lustyk, Julian Janus, Marzenna Pytel-Kudela, Anatoliy Prykarpatsky (2009)

Open Mathematics

The projection-algebraic approach of the Calogero type for discrete approximations of linear and nonlinear differential operator equations in Banach spaces is studied. The solution convergence and realizability properties of the related approximating schemes are analyzed. For the limiting-dense approximating scheme of linear differential operator equations a new convergence theorem is stated. In the case of nonlinear differential operator equations the effective convergence conditions for the approximated...

The stability analysis of a discretized pantograph equation

Jiří Jánský, Petr Kundrát (2011)

Mathematica Bohemica

The paper deals with a difference equation arising from the scalar pantograph equation via the backward Euler discretization. A case when the solution tends to zero but after reaching a certain index it loses this tendency is discussed. We analyse this problem and estimate the value of such an index. Furthermore, we show that the utilized proof technique enables us to investigate some other numerical formulae, too.

The virtual element method for eigenvalue problems with potential terms on polytopic meshes

Ondřej Čertík, Francesca Gardini, Gianmarco Manzini, Giuseppe Vacca (2018)

Applications of Mathematics

We extend the conforming virtual element method (VEM) to the numerical resolution of eigenvalue problems with potential terms on a polytopic mesh. An important application is that of the Schrödinger equation with a pseudopotential term. This model is a fundamental element in the numerical resolution of more complex problems from the Density Functional Theory. The VEM is based on the construction of the discrete bilinear forms of the variational formulation through certain polynomial projection operators...

Time discretizations for evolution problems

Miloslav Vlasák (2017)

Applications of Mathematics

The aim of this work is to give an introductory survey on time discretizations for liner parabolic problems. The theory of stability for stiff ordinary differential equations is explained on this problem and applied to Runge-Kutta and multi-step discretizations. Moreover, a natural connection between Galerkin time discretizations and Runge-Kutta methods together with order reduction phenomenon is discussed.

Toward a two-step Runge-Kutta code for nonstiff differential systems

Zbigniew Bartoszewski, Zdzisław Jackiewicz (2001)

Applicationes Mathematicae

Various issues related to the development of a new code for nonstiff differential equations are discussed. This code is based on two-step Runge-Kutta methods of order five and stage order five. Numerical experiments are presented which demonstrate that the new code is competitive with the Matlab ode45 program for all tolerances.

Transfer of boundary conditions for Poisson's equation on a circle

Jiří Taufer, Emil Vitásek (1994)

Applications of Mathematics

The method of transfer of boundary conditions yields a universal frame into which most methods for solving boundary value problems for ordinary differential equations can be included. The purpose of this paper is to show a possibility to extend the idea of transfer of conditions to a particular twodimensional problem.

Transfer of conditions for singular boundary value problems

Petr Přikryl, Jiří Taufer, Emil Vitásek (1989)

Aplikace matematiky

Numerical solution of linear boundary value problems for ordinary differential equations by the method of transfer of conditions consists in replacing the problem under consideration by a sequence of initial value problems. The method of transfer for systems of equations of the first order with Lebesque integrable coefficients was studied by one of the authors before. The purpose of this paper is to extend the idea of the transfer of conditions to singular boundary value problems for a linear second-order...

Currently displaying 801 – 820 of 882