Finite Difference Approximations to the Dirichlet Problem for Elliptic Systems.
W. Walter, C.U. Huy, P.J. McKenna (1986)
Numerische Mathematik
Roberto Alicandro, Matteo Focardi, Maria Stella Gelli (2000)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Lorella Fatone, Daniele Funaro, Valentina Scannavini (2007)
ESAIM: Mathematical Modelling and Numerical Analysis
The superconsistent collocation method, which is based on a collocation grid different from the one used to represent the solution, has proven to be very accurate in the resolution of various functional equations. Excellent results can be also obtained for what concerns preconditioning. Some analysis and numerous experiments, regarding the use of finite-differences preconditioners, for matrices arising from pseudospectral approximations of advection-diffusion boundary value problems, are presented...
Weihua Geng, Shan Zhao (2013)
Molecular Based Mathematical Biology
The Poisson-Boltzmann (PB) model is an effective approach for the electrostatics analysis of solvated biomolecules. The nonlinearity associated with the PB equation is critical when the underlying electrostatic potential is strong, but is extremely difficult to solve numerically. In this paper, we construct two operator splitting alternating direction implicit (ADI) schemes to efficiently and stably solve the nonlinear PB equation in a pseudo-transient continuation approach. The operator splitting...
Trudy Matematiceskogo Centra Imeni N. I. Lobacevskogo
Avery, R.I., Anderson, D.R. (2009)
Electronic Journal of Qualitative Theory of Differential Equations [electronic only]
Garth A. Baker, Vassilios A. Dougalis, Steven M. Serbin (1979)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Liu, Don, Kuang, Weijia, Tangborn, Andrew (2009)
Advances in Mathematical Physics
Serra Capizzano, Stefano, Tablino Possio, Cristina (2000)
ETNA. Electronic Transactions on Numerical Analysis [electronic only]
Cantó, Begoña, Coll, Carmen, Sánchez, Elena (2011)
Mathematical Problems in Engineering
Valentina De Simione (2000)
Bollettino dell'Unione Matematica Italiana
Paprzycki, Marcin, Petrova, Svetozara, Sanchez, Julian (1999)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Jean-Paul Chehab (1998)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
J.-P. Chehab, A. Miranville (1998)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Kathryn A. Trapp (2008)
ESAIM: Mathematical Modelling and Numerical Analysis
A class of compatible spatial discretizations for solving partial differential equations is presented. A discrete exact sequence framework is developed to classify these methods which include the mimetic and the covolume methods as well as certain low-order finite element methods. This construction ensures discrete analogs of the differential operators that satisfy the identities and theorems of vector calculus, in particular a Helmholtz decomposition theorem for the discrete function spaces. This...
Jovanović, Boško S., Popović, Branislav Z. (1998)
Novi Sad Journal of Mathematics
Jean Chanzy (2006)
Annales de la faculté des sciences de Toulouse Mathématiques
Ce travail a pour objet l’étude d’une méthode de « discrétisation » du Laplacien dans le problème de Poisson à deux dimensions sur un rectangle, avec des conditions aux limites de Dirichlet. Nous approchons l’opérateur Laplacien par une matrice de Toeplitz à blocs, eux-mêmes de Toeplitz, et nous établissons une formule donnant les blocs de l’inverse de cette matrice. Nous donnons ensuite un développement asymptotique de la trace de la matrice inverse, et du déterminant de la matrice de Toeplitz....
Konovalov, A.N. (2000)
Siberian Mathematical Journal
Yogi Erlangga, Eli Turkel (2012)
ESAIM: Mathematical Modelling and Numerical Analysis
We consider high order finite difference approximations to the Helmholtz equation in an exterior domain. We include a simplified absorbing boundary condition to approximate the Sommerfeld radiation condition. This yields a large, but sparse, complex system, which is not self-adjoint and not positive definite. We discretize the equation with a compact fourth or sixth order accurate scheme. We solve this large system of linear equations with a Krylov subspace iterative method. Since the method converges...
Yogi Erlangga, Eli Turkel (2012)
ESAIM: Mathematical Modelling and Numerical Analysis
We consider high order finite difference approximations to the Helmholtz equation in an exterior domain. We include a simplified absorbing boundary condition to approximate the Sommerfeld radiation condition. This yields a large, but sparse, complex system, which is not self-adjoint and not positive definite. We discretize the equation with a compact fourth or sixth order accurate scheme. We solve this large system of linear equations with a Krylov subspace iterative method. Since the method converges...