Displaying 221 – 240 of 596

Showing per page

Enrichissement des interpolations d’éléments finis en utilisant des méthodes sans maillage

Antonio Huerta, Sonia Fernández-Méndez, Pedro Díez (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Les méthodes sans maillage emploient une interpolation associée à un ensemble de particules : aucune information concernant la connectivité ne doit être fournie. Un des atouts de ces méthodes est que la discrétisation peut être enrichie d’une façon très simple, soit en augmentant le nombre de particules (analogue à la stratégie de raffinement h ), soit en augmentant l’ordre de consistance (analogue à la stratégie de raffinement p ). Néanmoins, le coût du calcul des fonctions d’interpolation est très...

Enrichissement des interpolations d'éléments finis en utilisant des méthodes sans maillage

Antonio Huerta, Sonia Fernández-Méndez, Pedro Díez (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Les méthodes sans maillage emploient une interpolation associée à un ensemble de particules : aucune information concernant la connectivité ne doit être fournie. Un des atouts de ces méthodes est que la discrétisation peut être enrichie d'une façon très simple, soit en augmentant le nombre de particules (analogue à la stratégie de raffinement h), soit en augmentant l'ordre de consistance (analogue à la stratégie de raffinement p). Néanmoins, le coût du calcul des fonctions d'interpolation est...

Error Control and Andaptivity for a Phase Relaxation Model

Zhiming Chen, Ricardo H. Nochetto, Alfred Schmidt (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The phase relaxation model is a diffuse interface model with small parameter ε which consists of a parabolic PDE for temperature θ and an ODE with double obstacles for phase variable χ. To decouple the system a semi-explicit Euler method with variable step-size τ is used for time discretization, which requires the stability constraint τ ≤ ε. Conforming piecewise linear finite elements over highly graded simplicial meshes with parameter h are further employed for space discretization. A posteriori...

Error estimates for linear finite elements on Bakhvalov-type meshes

Hans-Görg Roos (2006)

Applications of Mathematics

For convection-diffusion problems with exponential layers, optimal error estimates for linear finite elements on Shishkin-type meshes are known. We present the first optimal convergence result in an energy norm for a Bakhvalov-type mesh.

Error estimates for modified local Shepard’s formulas in Sobolev spaces

Carlos Zuppa (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Interest in meshfree methods in solving boundary-value problems has grown rapidly in recent years. A meshless method that has attracted considerable interest in the community of computational mechanics is built around the idea of modified local Shepard’s partition of unity. For these kinds of applications it is fundamental to analyze the order of the approximation in the context of Sobolev spaces. In this paper, we study two different techniques for building modified local Shepard’s formulas, and...

Error estimates for Modified Local Shepard's Formulas in Sobolev spaces

Carlos Zuppa (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Interest in meshfree methods in solving boundary-value problems has grown rapidly in recent years. A meshless method that has attracted considerable interest in the community of computational mechanics is built around the idea of modified local Shepard's partition of unity. For these kinds of applications it is fundamental to analyze the order of the approximation in the context of Sobolev spaces. In this paper, we study two different techniques for building modified local Shepard's formulas, and...

Currently displaying 221 – 240 of 596