Displaying 281 – 300 of 596

Showing per page

Finite Volume Box Schemes and Mixed Methods

Jean-Pierre Croisille (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present the numerical analysis on the Poisson problem of two mixed Petrov-Galerkin finite volume schemes for equations in divergence form div ϕ ( u , u ) = f . The first scheme, which has been introduced in [CITE], is a generalization in two dimensions of Keller's box-scheme. The second scheme is the dual of the first one, and is a cell-centered scheme for u and the flux φ. For the first scheme, the two trial finite element spaces are the nonconforming space of Crouzeix-Raviart for the primal unknown u...

Finite volume methods for elliptic PDE’s : a new approach

Panagiotis Chatzipantelidis (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider a new formulation for finite volume element methods, which is satisfied by known finite volume methods and it can be used to introduce new ones. This framework results by approximating the test function in the formulation of finite element method. We analyze piecewise linear conforming or nonconforming approximations on nonuniform triangulations and prove optimal order H 1 - norm and L 2 - norm error estimates.

Finite Volume Methods for Elliptic PDE's: A New Approach

Panagiotis Chatzipantelidis (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a new formulation for finite volume element methods, which is satisfied by known finite volume methods and it can be used to introduce new ones. This framework results by approximating the test function in the formulation of finite element method. We analyze piecewise linear conforming or nonconforming approximations on nonuniform triangulations and prove optimal order H1-norm and L2-norm error estimates.

Finite volume schemes for the p-laplacian on cartesian meshes

Boris Andreianov, Franck Boyer, Florence Hubert (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is concerned with the finite volume approximation of the p-laplacian equation with homogeneous Dirichlet boundary conditions on rectangular meshes. A reconstruction of the norm of the gradient on the mesh’s interfaces is needed in order to discretize the p-laplacian operator. We give a detailed description of the possible nine points schemes ensuring that the solution of the resulting finite dimensional nonlinear system exists and is unique. These schemes, called admissible, are locally...

Finite volume schemes for the p-Laplacian on Cartesian meshes

Boris Andreianov, Franck Boyer, Florence Hubert (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the finite volume approximation of the p-Laplacian equation with homogeneous Dirichlet boundary conditions on rectangular meshes. A reconstruction of the norm of the gradient on the mesh's interfaces is needed in order to discretize the p-Laplacian operator. We give a detailed description of the possible nine points schemes ensuring that the solution of the resulting finite dimensional nonlinear system exists and is unique. These schemes, called admissible, are locally...

Finite-element discretizations of a two-dimensional grade-two fluid model

Vivette Girault, Larkin Ridgway Scott (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose and analyze several finite-element schemes for solving a grade-two fluid model, with a tangential boundary condition, in a two-dimensional polygon. The exact problem is split into a generalized Stokes problem and a transport equation, in such a way that it always has a solution without restriction on the shape of the domain and on the size of the data. The first scheme uses divergence-free discrete velocities and a centered discretization of the transport term, whereas the other schemes...

Finite-element discretizations of a two-dimensional grade-two fluid model

Vivette Girault, Larkin Ridgway Scott (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose and analyze several finite-element schemes for solving a grade-two fluid model, with a tangential boundary condition, in a two-dimensional polygon. The exact problem is split into a generalized Stokes problem and a transport equation, in such a way that it always has a solution without restriction on the shape of the domain and on the size of the data. The first scheme uses divergence-free discrete velocities and a centered discretization of the transport term, whereas the other schemes...

Formulations Mixtes Augmentées et Applications

Boujemâa Achchab, Abdellatif AGOUZAL (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose and analyse a abstract framework for augmented mixed formulations. We give a priori error estimate in the general case: conforming and nonconforming approximations with or without numerical integration. Finally, a posteriori error estimator is given. An example of stabilized formulation for Stokes problem is analysed.

Galerkin proper orthogonal decomposition methods for parameter dependent elliptic systems

Martin Kahlbacher, Stefan Volkwein (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Proper orthogonal decomposition (POD) is a powerful technique for model reduction of linear and non-linear systems. It is based on a Galerkin type discretization with basis elements created from the system itself. In this work, error estimates for Galerkin POD methods for linear elliptic, parameter-dependent systems are proved. The resulting error bounds depend on the number of POD basis functions and on the parameter grid that is used to generate the snapshots and to compute the POD basis. The...

Currently displaying 281 – 300 of 596