Isotropic and anisotropic a posteriori error estimation of the mixed finite element method for second order operators in divergence form.
Nicaise, Serge, Creusé, Emmanuel (2006)
ETNA. Electronic Transactions on Numerical Analysis [electronic only]
Lin Qun (1982)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Thomas Apel, Dieter Sirch (2011)
Applications of Mathematics
An -estimate of the finite element error is proved for a Dirichlet and a Neumann boundary value problem on a three-dimensional, prismatic and non-convex domain that is discretized by an anisotropic tetrahedral mesh. To this end, an approximation error estimate for an interpolation operator that is preserving the Dirichlet boundary conditions is given. The challenge for the Neumann problem is the proof of a local interpolation error estimate for functions from a weighted Sobolev space.
Joachim A. Nitsche (1979)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Reinhard Scholz (1977)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Boulbrachene, M., Haiour, M., Saadi, S. (2003)
International Journal of Mathematics and Mathematical Sciences
Boulbrachene, M., Cortey-Dumont, P., Miellou, J.C. (2001)
International Journal of Mathematics and Mathematical Sciences
Stefano Finzi Vita (1982)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Joseph W. Jerome, Th. Kerkhoven (1990)
Numerische Mathematik
Eduardo Casas (1985)
Numerische Mathematik
Carlos Zuppa (2005)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
In this paper, the Babuška’s theory of Lagrange multipliers is extended to higher order elliptic Dirichlet problems. The resulting variational formulation provides an efficient numerical squeme in meshless methods for the approximation of elliptic problems with essential boundary conditions.
Carlos Zuppa (2010)
ESAIM: Mathematical Modelling and Numerical Analysis
In this paper, the Babuška's theory of Lagrange multipliers is extended to higher order elliptic Dirichlet problems. The resulting variational formulation provides an efficient numerical squeme in meshless methods for the approximation of elliptic problems with essential boundary conditions.
Y. Maday, A. Quarteroni (1981)
Numerische Mathematik
Berndt, Markus, Manteuffel, Thomas A., McCormick, Stephen F. (1997)
ETNA. Electronic Transactions on Numerical Analysis [electronic only]
Douglas N. Arnold, Liu Xiaobo (1995)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
L. B. Wahlbin (1978)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
V. Thomée, L.B. Wahlbin (1983)
Numerische Mathematik
B. Achchab, M. El Fatini, A. Souissi (2010)
Mathematical Modelling of Natural Phenomena
We derive a residual a posteriori error estimates for the subscales stabilization of convection diffusion equation. The estimator yields upper bound on the error which is global and lower bound that is local
M. Bernadou, Y. Ducatel (1978)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Franco Brezzi, Annalisa Buffa, Konstantin Lipnikov (2009)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
We developed a mimetic finite difference method for solving elliptic equations with tensor coefficients on polyhedral meshes. The first-order convergence estimates in a mesh-dependent norm are derived.