Displaying 21 – 40 of 596

Showing per page

A finite element method for domain decomposition with non-matching grids

Roland Becker, Peter Hansbo, Rolf Stenberg (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this note, we propose and analyse a method for handling interfaces between non-matching grids based on an approach suggested by Nitsche (1971) for the approximation of Dirichlet boundary conditions. The exposition is limited to self-adjoint elliptic problems, using Poisson’s equation as a model. A priori and a posteriori error estimates are given. Some numerical results are included.

A finite element method for domain decomposition with non-matching grids

Roland Becker, Peter Hansbo, Rolf Stenberg (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this note, we propose and analyse a method for handling interfaces between non-matching grids based on an approach suggested by Nitsche (1971) for the approximation of Dirichlet boundary conditions. The exposition is limited to self-adjoint elliptic problems, using Poisson's equation as a model. A priori and a posteriori error estimates are given. Some numerical results are included.

A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids

Komla Domelevo, Pascal Omnes (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a finite volume method based on the integration of the Laplace equation on both the cells of a primal almost arbitrary two-dimensional mesh and those of a dual mesh obtained by joining the centers of the cells of the primal mesh. The key ingredient is the definition of discrete gradient and divergence operators verifying a discrete Green formula. This method generalizes an existing finite volume method that requires “Voronoi-type” meshes. We show the equivalence of this finite volume...

A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids

Komla Domelevo, Pascal Omnes (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a finite volume method based on the integration of the Laplace equation on both the cells of a primal almost arbitrary two-dimensional mesh and those of a dual mesh obtained by joining the centers of the cells of the primal mesh. The key ingredient is the definition of discrete gradient and divergence operators verifying a discrete Green formula. This method generalizes an existing finite volume method that requires “Voronoi-type” meshes. We show the equivalence of this finite volume...

A higher order pressure segregation scheme for the time-dependent magnetohydrodynamics equations

Yun-Bo Yang, Yao-Lin Jiang, Qiong-Xiang Kong (2019)

Applications of Mathematics

A higher order pressure segregation scheme for the time-dependent incompressible magnetohydrodynamics (MHD) equations is presented. This scheme allows us to decouple the MHD system into two sub-problems at each time step. First, a coupled linear elliptic system is solved for the velocity and the magnetic field. And then, a Poisson-Neumann problem is treated for the pressure. The stability is analyzed and the error analysis is accomplished by interpreting this segregated scheme as a higher order...

A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations

Gabriel R. Barrenechea, Volker John, Petr Knobloch (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

An extension of the local projection stabilization (LPS) finite element method for convection-diffusion-reaction equations is presented and analyzed, both in the steady-state and the transient setting. In addition to the standard LPS method, a nonlinear crosswind diffusion term is introduced that accounts for the reduction of spurious oscillations. The existence of a solution can be proved and, depending on the choice of the stabilization parameter, also its uniqueness. Error estimates are derived...

A mathematical and computational framework for reliable real-time solution of parametrized partial differential equations

Christophe Prud'homme, Dimitrios V. Rovas, Karen Veroy, Anthony T. Patera (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present in this article two components: these components can in fact serve various goals independently, though we consider them here as an ensemble. The first component is a technique for the rapid and reliable evaluation prediction of linear functional outputs of elliptic (and parabolic) partial differential equations with affine parameter dependence. The essential features are (i) (provably) rapidly convergent global reduced–basis approximations — Galerkin projection onto a space W N spanned...

A Mathematical and Computational Framework for Reliable Real-Time Solution of Parametrized Partial Differential Equations

Christophe Prud'homme, Dimitrios V. Rovas, Karen Veroy, Anthony T. Patera (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present in this article two components: these components can in fact serve various goals independently, though we consider them here as an ensemble. The first component is a technique for the rapid and reliable evaluation prediction of linear functional outputs of elliptic (and parabolic) partial differential equations with affine parameter dependence. The essential features are (i) (provably) rapidly convergent global reduced–basis approximations — Galerkin projection onto a space WN spanned...

A matrix constructive method for the analytic-numerical solution of coupled partial differential systems

Lucas Jódar, Enrique A. Navarro, M. V. Ferrer (1995)

Applications of Mathematics

In this paper we construct analytic-numerical solutions for initial-boundary value systems related to the equation u t - A u x x - B u = 0 , where B is an arbitrary square complex matrix and A ia s matrix such that the real part of the eigenvalues of the matrix 1 2 ( A + A H ) is positive. Given an admissible error ε and a finite domain G , and analytic-numerical solution whose error is uniformly upper bounded by ε in G , is constructed.

A mixed–FEM and BEM coupling for a three-dimensional eddy current problem

Salim Meddahi, Virginia Selgas (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study in this paper the electromagnetic field generated in a conductor by an alternating current density. The resulting interface problem (see Bossavit (1993)) between the metal and the dielectric medium is treated by a mixed–FEM and BEM coupling method. We prove that our BEM-FEM formulation is well posed and that it leads to a convergent Galerkin method.

A mixed–FEM and BEM coupling for a three-dimensional eddy current problem

Salim Meddahi, Virginia Selgas (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study in this paper the electromagnetic field generated in a conductor by an alternating current density. The resulting interface problem (see Bossavit (1993)) between the metal and the dielectric medium is treated by a mixed–FEM and BEM coupling method. We prove that our BEM-FEM formulation is well posed and that it leads to a convergent Galerkin method.

Currently displaying 21 – 40 of 596